Spaces:
Runtime error
Runtime error
lots of changes
Browse files- .gitignore +4 -1
- DisentanglementBase.py +252 -70
- check_images.py +256 -0
- data/scores_Blue.csv +3 -0
- data/scores_Green.csv +3 -0
- data/scores_InterfaceGAN_H1_8.csv +3 -0
- data/scores_Red.csv +3 -0
- data/scores_Saturation.csv +3 -0
- data/scores_StyleSpace_H1_8.csv +3 -0
- data/scores_Value.csv +3 -0
- data/textile_annotated_files/seeds0000-100000_S.pkl +1 -1
- test_disentanglement.sh +12 -0
.gitignore
CHANGED
@@ -32,7 +32,10 @@ git-large-file
|
|
32 |
deta_drive.py
|
33 |
secret_keys.py
|
34 |
|
35 |
-
data/old
|
|
|
|
|
|
|
36 |
# Large files
|
37 |
# data/preprocessed_image_net/
|
38 |
# data/activation/*.pkl
|
|
|
32 |
deta_drive.py
|
33 |
secret_keys.py
|
34 |
|
35 |
+
data/old/
|
36 |
+
archive/
|
37 |
+
figures/
|
38 |
+
colors_test/
|
39 |
# Large files
|
40 |
# data/preprocessed_image_net/
|
41 |
# data/activation/*.pkl
|
DisentanglementBase.py
CHANGED
@@ -1,9 +1,11 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
|
4 |
from sklearn.svm import SVC
|
5 |
from sklearn.decomposition import PCA
|
6 |
-
from sklearn.linear_model import LogisticRegression
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
|
9 |
from tqdm import tqdm
|
@@ -27,8 +29,50 @@ sys.path.append('.')
|
|
27 |
import dnnlib
|
28 |
import legacy
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
class DisentanglementBase:
|
31 |
-
def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s):
|
32 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
33 |
print('Using device', self.device)
|
34 |
self.repo_folder = repo_folder
|
@@ -36,6 +80,8 @@ class DisentanglementBase:
|
|
36 |
self.annotations = annotations
|
37 |
self.df = df
|
38 |
self.space = space
|
|
|
|
|
39 |
|
40 |
self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
|
41 |
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
|
@@ -49,7 +95,6 @@ class DisentanglementBase:
|
|
49 |
if compute_s:
|
50 |
self.get_s_space()
|
51 |
|
52 |
-
|
53 |
def to_hsv(self):
|
54 |
"""
|
55 |
The tohsv function takes the top 3 colors of each image and converts them to HSV values.
|
@@ -60,17 +105,30 @@ class DisentanglementBase:
|
|
60 |
:doc-author: Trelent
|
61 |
"""
|
62 |
print('Adding HSV encoding')
|
63 |
-
self.df['H1'] = self.df['top1col'].map(lambda x:
|
64 |
-
self.df['H2'] = self.df['top2col'].map(lambda x:
|
65 |
-
self.df['H3'] = self.df['top3col'].map(lambda x:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
self.df['
|
69 |
-
self.df['
|
|
|
70 |
|
71 |
-
self.df['
|
72 |
-
self.df['
|
73 |
-
self.df['
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def get_s_space(self):
|
76 |
"""
|
@@ -89,7 +147,7 @@ class DisentanglementBase:
|
|
89 |
W = w_torch.expand((16, -1)).unsqueeze(0)
|
90 |
s = []
|
91 |
for i,layer in enumerate(self.layers):
|
92 |
-
s.append(getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0)).numpy())
|
93 |
|
94 |
ss.append(s)
|
95 |
self.annotations['s_vectors'] = ss
|
@@ -116,17 +174,32 @@ class DisentanglementBase:
|
|
116 |
print('Shape embedding:', X.shape)
|
117 |
return X
|
118 |
|
119 |
-
def get_train_val(self,
|
120 |
X = self.get_encoded_latent()
|
121 |
-
y = np.array(self.df[
|
122 |
-
if
|
|
|
|
|
|
|
123 |
y_cat = pd.cut(y,
|
124 |
-
bins=
|
125 |
-
labels=self.colors_list
|
126 |
-
|
|
|
|
|
127 |
x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
|
128 |
else:
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
return x_train, x_val, y_train, y_val
|
131 |
|
132 |
def InterFaceGAN_separation_vector(self, method='LR', C=0.1):
|
@@ -148,17 +221,23 @@ class DisentanglementBase:
|
|
148 |
"""
|
149 |
x_train, x_val, y_train, y_val = self.get_train_val()
|
150 |
|
151 |
-
if
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
clf.fit(x_train, y_train)
|
159 |
-
print('Val performance
|
160 |
return clf.coef_ / np.linalg.norm(clf.coef_)
|
161 |
-
|
162 |
def get_original_position_latent(self, positive_idxs, negative_idxs):
|
163 |
# ... (existing code for get_original_pos)
|
164 |
separation_vectors = []
|
@@ -327,7 +406,7 @@ class DisentanglementBase:
|
|
327 |
|
328 |
return img
|
329 |
|
330 |
-
def generate_changes(self, seed, separation_vector, min_epsilon=-3, max_epsilon=3, count=5, savefig=True, feature=None, method=None):
|
331 |
"""
|
332 |
The regenerate_images function takes a model, z, and decision_boundary as input. It then
|
333 |
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
|
@@ -348,14 +427,13 @@ class DisentanglementBase:
|
|
348 |
lambdas = np.linspace(min_epsilon, max_epsilon, count)
|
349 |
images = []
|
350 |
# Generate images.
|
351 |
-
for _, lambd in enumerate(
|
352 |
if self.space.lower() == 's':
|
353 |
images.append(self.generate_flexible_images(seed, separation_vector=separation_vector, lambd=lambd))
|
354 |
elif self.space.lower() in ['z', 'w']:
|
355 |
images.append(self.generate_images(seed, separation_vector=separation_vector, lambd=lambd))
|
356 |
|
357 |
if savefig:
|
358 |
-
print('Generating image for color', feature)
|
359 |
fig, axs = plt.subplots(1, len(images), figsize=(90,20))
|
360 |
title = 'Disentanglement method: '+ method + ', on feature: ' + feature + ' on space: ' + self.space + ', image seed: ' + str(seed)
|
361 |
name = '_'.join([method, feature, self.space, str(seed), str(lambdas[-1])])
|
@@ -365,42 +443,117 @@ class DisentanglementBase:
|
|
365 |
axs[i].imshow(image)
|
366 |
axs[i].set_title(np.round(lambd, 2))
|
367 |
plt.tight_layout()
|
368 |
-
plt.savefig(join(self.repo_folder, 'figures', name+'.jpg'))
|
369 |
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
return images, lambdas
|
371 |
|
372 |
def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
|
373 |
items = random.sample(range(100000), samples)
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
colors_orig = extract_color(images[1], 5, 1, None)
|
386 |
-
h1, s1, v1 = ImageColor.getcolor(colors_orig[0], 'HSV')
|
387 |
|
388 |
-
|
389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
matches += 1
|
396 |
|
397 |
-
|
398 |
-
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
-
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
def main():
|
405 |
repo_folder = '.'
|
406 |
annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
|
@@ -417,26 +570,56 @@ def main():
|
|
417 |
colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
|
418 |
'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
|
419 |
'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
|
|
|
|
|
420 |
|
421 |
scores = []
|
422 |
-
kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False],
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
print('Launching experiment with space:', space)
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
-
for method in ['
|
429 |
if space != 's' and method == 'InterFaceGAN':
|
430 |
print('Now obtaining separation vector for using InterfaceGAN')
|
431 |
for met in kwargs['CL method']:
|
432 |
for c in kwargs['C']:
|
433 |
separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
|
434 |
for i, color in enumerate(colors_list):
|
435 |
-
print('Generating images with variations')
|
436 |
for s in range(30):
|
437 |
seed = random.randint(0,100000)
|
438 |
for eps in kwargs['max_lambda']:
|
439 |
-
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=str(method) + '_' + str(met) + '_' + str(c))
|
440 |
|
441 |
print('Finally obtaining verification score')
|
442 |
for verif in kwargs['lambda_verif']:
|
@@ -446,7 +629,7 @@ def main():
|
|
446 |
scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
|
447 |
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
448 |
print(score_df)
|
449 |
-
score_df.to_csv(join(repo_folder, 'data/
|
450 |
|
451 |
|
452 |
elif method == 'StyleSpace':
|
@@ -456,11 +639,11 @@ def main():
|
|
456 |
for cutout in kwargs['cutout']:
|
457 |
separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
|
458 |
for i, color in enumerate(colors_list):
|
459 |
-
print('Generating images with variations')
|
460 |
for s in range(30):
|
461 |
seed = random.randint(0,100000)
|
462 |
for eps in kwargs['max_lambda']:
|
463 |
-
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method + '_' + str(num_factors) + '_' + str(cutout) + '_' + str(sign))
|
464 |
|
465 |
print('Finally obtaining verification score')
|
466 |
for verif in kwargs['lambda_verif']:
|
@@ -470,29 +653,28 @@ def main():
|
|
470 |
scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
|
471 |
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
472 |
print(score_df)
|
473 |
-
score_df.to_csv(join(repo_folder, 'data/
|
474 |
|
475 |
if space == 'w' and method == 'GANSpace':
|
476 |
print('Now obtaining separation vector for using GANSpace')
|
477 |
separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
|
|
|
478 |
for s in range(30):
|
479 |
print('Generating images with variations')
|
480 |
seed = random.randint(0,100000)
|
481 |
for i in range(100):
|
482 |
for eps in kwargs['max_lambda']:
|
483 |
-
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=
|
484 |
|
485 |
score = None
|
486 |
-
scores.append([space, method,
|
487 |
else:
|
488 |
print('Skipping', method, 'on space', space)
|
489 |
continue
|
490 |
|
491 |
-
|
492 |
-
|
493 |
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
494 |
print(score_df)
|
495 |
-
score_df.to_csv(join(repo_folder, 'data/
|
496 |
|
497 |
if __name__ == "__main__":
|
498 |
main()
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
from sklearn.svm import SVC
|
7 |
from sklearn.decomposition import PCA
|
8 |
+
from sklearn.linear_model import LogisticRegression, LinearRegression
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
|
11 |
from tqdm import tqdm
|
|
|
29 |
import dnnlib
|
30 |
import legacy
|
31 |
|
32 |
+
|
33 |
+
def hex2rgb(hex_value):
|
34 |
+
h = hex_value.strip("#")
|
35 |
+
rgb = tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
|
36 |
+
return rgb
|
37 |
+
|
38 |
+
def rgb2hsv(r, g, b):
|
39 |
+
# Normalize R, G, B values
|
40 |
+
r, g, b = r / 255.0, g / 255.0, b / 255.0
|
41 |
+
|
42 |
+
# h, s, v = hue, saturation, value
|
43 |
+
max_rgb = max(r, g, b)
|
44 |
+
min_rgb = min(r, g, b)
|
45 |
+
difference = max_rgb-min_rgb
|
46 |
+
|
47 |
+
# if max_rgb and max_rgb are equal then h = 0
|
48 |
+
if max_rgb == min_rgb:
|
49 |
+
h = 0
|
50 |
+
|
51 |
+
# if max_rgb==r then h is computed as follows
|
52 |
+
elif max_rgb == r:
|
53 |
+
h = (60 * ((g - b) / difference) + 360) % 360
|
54 |
+
|
55 |
+
# if max_rgb==g then compute h as follows
|
56 |
+
elif max_rgb == g:
|
57 |
+
h = (60 * ((b - r) / difference) + 120) % 360
|
58 |
+
|
59 |
+
# if max_rgb=b then compute h
|
60 |
+
elif max_rgb == b:
|
61 |
+
h = (60 * ((r - g) / difference) + 240) % 360
|
62 |
+
|
63 |
+
# if max_rgb==zero then s=0
|
64 |
+
if max_rgb == 0:
|
65 |
+
s = 0
|
66 |
+
else:
|
67 |
+
s = (difference / max_rgb) * 100
|
68 |
+
|
69 |
+
# compute v
|
70 |
+
v = max_rgb * 100
|
71 |
+
# return rounded values of H, S and V
|
72 |
+
return tuple(map(round, (h, s, v)))
|
73 |
+
|
74 |
class DisentanglementBase:
|
75 |
+
def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s=False, variable='H1', categorical=True):
|
76 |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
77 |
print('Using device', self.device)
|
78 |
self.repo_folder = repo_folder
|
|
|
80 |
self.annotations = annotations
|
81 |
self.df = df
|
82 |
self.space = space
|
83 |
+
self.categorical = categorical
|
84 |
+
self.variable = variable
|
85 |
|
86 |
self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
|
87 |
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
|
|
|
95 |
if compute_s:
|
96 |
self.get_s_space()
|
97 |
|
|
|
98 |
def to_hsv(self):
|
99 |
"""
|
100 |
The tohsv function takes the top 3 colors of each image and converts them to HSV values.
|
|
|
105 |
:doc-author: Trelent
|
106 |
"""
|
107 |
print('Adding HSV encoding')
|
108 |
+
self.df['H1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
|
109 |
+
self.df['H2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
|
110 |
+
self.df['H3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
|
111 |
+
|
112 |
+
self.df['S1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
|
113 |
+
self.df['S2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
|
114 |
+
self.df['S3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
|
115 |
+
|
116 |
+
self.df['V1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
|
117 |
+
self.df['V2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
|
118 |
+
self.df['V3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
|
119 |
|
120 |
+
print('Adding RGB encoding')
|
121 |
+
self.df['R1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
|
122 |
+
self.df['R2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
|
123 |
+
self.df['R3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
|
124 |
|
125 |
+
self.df['G1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
|
126 |
+
self.df['G2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
|
127 |
+
self.df['G3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
|
128 |
+
|
129 |
+
self.df['B1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
|
130 |
+
self.df['B2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
|
131 |
+
self.df['B3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
|
132 |
|
133 |
def get_s_space(self):
|
134 |
"""
|
|
|
147 |
W = w_torch.expand((16, -1)).unsqueeze(0)
|
148 |
s = []
|
149 |
for i,layer in enumerate(self.layers):
|
150 |
+
s.append(getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0)).cpu().numpy())
|
151 |
|
152 |
ss.append(s)
|
153 |
self.annotations['s_vectors'] = ss
|
|
|
174 |
print('Shape embedding:', X.shape)
|
175 |
return X
|
176 |
|
177 |
+
def get_train_val(self, extremes=False):
|
178 |
X = self.get_encoded_latent()
|
179 |
+
y = np.array(self.df[self.variable].values)
|
180 |
+
if self.categorical:
|
181 |
+
bins = [(x-1) * 360 / (len(self.colors_list) - 1) if x != 1
|
182 |
+
else 1 for x in range(len(self.colors_list) + 1)]
|
183 |
+
bins[0] = 0
|
184 |
y_cat = pd.cut(y,
|
185 |
+
bins=bins,
|
186 |
+
labels=self.colors_list,
|
187 |
+
include_lowest=True
|
188 |
+
)
|
189 |
+
print(y_cat.value_counts())
|
190 |
x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
|
191 |
else:
|
192 |
+
if extremes:
|
193 |
+
# Calculate the number of elements to consider (10% of array size)
|
194 |
+
num_elements = int(0.2 * len(y))
|
195 |
+
# Get indices of the top num_elements maximum values
|
196 |
+
top_indices = np.argpartition(array, -num_elements)[-num_elements:]
|
197 |
+
bottom_indices = np.argpartition(array, -num_elements)[:num_elements]
|
198 |
+
y_ext = y[top_indices + bottom_indices, :]
|
199 |
+
X_ext = X[top_indices + bottom_indices, :]
|
200 |
+
x_train, x_val, y_train, y_val = train_test_split(X_ext, y_ext, test_size=0.2)
|
201 |
+
else:
|
202 |
+
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
|
203 |
return x_train, x_val, y_train, y_val
|
204 |
|
205 |
def InterFaceGAN_separation_vector(self, method='LR', C=0.1):
|
|
|
221 |
"""
|
222 |
x_train, x_val, y_train, y_val = self.get_train_val()
|
223 |
|
224 |
+
if self.categorical:
|
225 |
+
if method == 'SVM':
|
226 |
+
svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C)
|
227 |
+
svc.fit(x_train, y_train)
|
228 |
+
print('Val performance SVM', np.round(svc.score(x_val, y_val), 2))
|
229 |
+
return svc.coef_ / np.linalg.norm(svc.coef_)
|
230 |
+
elif method == 'LR':
|
231 |
+
clf = LogisticRegression(random_state=0, C=C)
|
232 |
+
clf.fit(x_train, y_train)
|
233 |
+
print('Val performance logistic regression', np.round(clf.score(x_val, y_val), 2))
|
234 |
+
return clf.coef_ / np.linalg.norm(clf.coef_)
|
235 |
+
else:
|
236 |
+
clf = LinearRegression()
|
237 |
clf.fit(x_train, y_train)
|
238 |
+
print('Val performance linear regression', np.round(clf.score(x_val, y_val), 2))
|
239 |
return clf.coef_ / np.linalg.norm(clf.coef_)
|
240 |
+
|
241 |
def get_original_position_latent(self, positive_idxs, negative_idxs):
|
242 |
# ... (existing code for get_original_pos)
|
243 |
separation_vectors = []
|
|
|
406 |
|
407 |
return img
|
408 |
|
409 |
+
def generate_changes(self, seed, separation_vector, min_epsilon=-3, max_epsilon=3, count=5, savefig=True, feature=None, method=None, save_separately=False):
|
410 |
"""
|
411 |
The regenerate_images function takes a model, z, and decision_boundary as input. It then
|
412 |
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
|
|
|
427 |
lambdas = np.linspace(min_epsilon, max_epsilon, count)
|
428 |
images = []
|
429 |
# Generate images.
|
430 |
+
for _, lambd in enumerate(lambdas):
|
431 |
if self.space.lower() == 's':
|
432 |
images.append(self.generate_flexible_images(seed, separation_vector=separation_vector, lambd=lambd))
|
433 |
elif self.space.lower() in ['z', 'w']:
|
434 |
images.append(self.generate_images(seed, separation_vector=separation_vector, lambd=lambd))
|
435 |
|
436 |
if savefig:
|
|
|
437 |
fig, axs = plt.subplots(1, len(images), figsize=(90,20))
|
438 |
title = 'Disentanglement method: '+ method + ', on feature: ' + feature + ' on space: ' + self.space + ', image seed: ' + str(seed)
|
439 |
name = '_'.join([method, feature, self.space, str(seed), str(lambdas[-1])])
|
|
|
443 |
axs[i].imshow(image)
|
444 |
axs[i].set_title(np.round(lambd, 2))
|
445 |
plt.tight_layout()
|
446 |
+
plt.savefig(join(self.repo_folder, 'figures', 'examples', name+'.jpg'))
|
447 |
plt.close()
|
448 |
+
|
449 |
+
if save_separately:
|
450 |
+
for i, (image, lambd) in enumerate(zip(images, lambdas)):
|
451 |
+
plt.imshow(image)
|
452 |
+
plt.tight_layout()
|
453 |
+
plt.savefig(join(self.repo_folder, 'figures', 'examples', name + '_' + str(lambd) + '.jpg'))
|
454 |
+
plt.close()
|
455 |
+
|
456 |
return images, lambdas
|
457 |
|
458 |
def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
|
459 |
items = random.sample(range(100000), samples)
|
460 |
+
if self.categorical:
|
461 |
+
if feature_id == 0:
|
462 |
+
hue_low = 0
|
463 |
+
hue_high = 1
|
464 |
+
elif feature_id == 1:
|
465 |
+
hue_low = 1
|
466 |
+
hue_high = (feature_id - 1) * 360 / (len(self.colors_list) - 1)
|
467 |
+
else:
|
468 |
+
hue_low = (feature_id - 1) * 360 / (len(self.colors_list) - 1)
|
469 |
+
hue_high = feature_id * 360 / (len(self.colors_list) - 1)
|
470 |
|
471 |
+
matches = 0
|
472 |
|
473 |
+
for seed in tqdm(items):
|
474 |
+
images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd, max_epsilon=lambd, count=3, savefig=savefig, feature=feature, method=method)
|
475 |
+
try:
|
476 |
+
colors_negative = extract_color(images[0], 5, 1, None)
|
477 |
+
h0, s0, v0 = rgb2hsv(*hex2rgb(colors_negative[0]))
|
|
|
|
|
|
|
478 |
|
479 |
+
colors_orig = extract_color(images[1], 5, 1, None)
|
480 |
+
h1, s1, v1 = rgb2hsv(*hex2rgb(colors_orig[0]))
|
481 |
+
|
482 |
+
colors_positive = extract_color(images[2], 5, 1, None)
|
483 |
+
h2, s2, v2 = rgb2hsv(*hex2rgb(colors_positive[0]))
|
484 |
+
|
485 |
+
if h1 > hue_low and h1 < hue_high:
|
486 |
+
samples -= 1
|
487 |
+
else:
|
488 |
+
if (h0 > hue_low and h0 < hue_high) or (h2 > hue_low and h2 < hue_high):
|
489 |
+
matches += 1
|
490 |
|
491 |
+
except Exception as e:
|
492 |
+
print(e)
|
493 |
+
|
494 |
+
return np.round(matches / samples, 2)
|
|
|
495 |
|
496 |
+
else:
|
497 |
+
increase = 0
|
498 |
|
499 |
+
for seed in tqdm(items):
|
500 |
+
images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd,
|
501 |
+
max_epsilon=lambd, count=3, savefig=savefig,
|
502 |
+
feature=feature, method=method)
|
503 |
+
try:
|
504 |
+
colors_negative = extract_color(images[0], 5, 1, None)
|
505 |
+
r0, g0, b0 = hex2rgb(colors_negative[0])
|
506 |
+
h0, s0, v0 = rgb2hsv(*hex2rgb(colors_negative[0]))
|
507 |
|
508 |
+
colors_orig = extract_color(images[1], 5, 1, None)
|
509 |
+
r1, g1, b1 = hex2rgb(colors_orig[0])
|
510 |
+
h1, s1, v1 = rgb2hsv(*hex2rgb(colors_orig[0]))
|
511 |
+
|
512 |
+
colors_positive = extract_color(images[2], 5, 1, None)
|
513 |
+
r2, g2, b2 = hex2rgb(colors_positive[0])
|
514 |
+
h2, s2, v2 = rgb2hsv(*hex2rgb(colors_positive[0]))
|
515 |
+
|
516 |
+
if 's' in self.variable.lower():
|
517 |
+
increase += max(0, s2 - s1)
|
518 |
+
elif 'v' in self.variable.lower():
|
519 |
+
increase += max(0, v2 - v1)
|
520 |
+
elif 'r' in self.variable.lower():
|
521 |
+
increase += max(0, r2 - r1)
|
522 |
+
elif 'g' in self.variable.lower():
|
523 |
+
increase += max(0, g2 - g1)
|
524 |
+
elif 'b' in self.variable.lower():
|
525 |
+
increase += max(0, b2 - b1)
|
526 |
+
else:
|
527 |
+
raise('Continous variable not allowed, choose between RGB or SV')
|
528 |
+
except Exception as e:
|
529 |
+
print(e)
|
530 |
+
|
531 |
+
return np.round(increase / samples, 2)
|
532 |
+
|
533 |
|
534 |
+
def continous_experiment(name, var, repo_folder, model, annotations, df, space, colors_list, kwargs):
|
535 |
+
scores = []
|
536 |
+
print(f'Launching {name} experiment')
|
537 |
+
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False, variable=var, categorical=False)
|
538 |
+
for extr in kwargs['extremes']:
|
539 |
+
separation_vector = disentanglemnet_exp.InterFaceGAN_separation_vector()
|
540 |
+
print(f'Generating images with variations for {name}')
|
541 |
+
for s in range(30):
|
542 |
+
seed = random.randint(0,100000)
|
543 |
+
for eps in kwargs['max_lambda']:
|
544 |
+
disentanglemnet_exp.generate_changes(seed, separation_vector, min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=name, method= 'InterFaceGAN_' + str(extr))
|
545 |
+
|
546 |
+
print('Finally obtaining verification score')
|
547 |
+
for verif in kwargs['lambda_verif']:
|
548 |
+
score = disentanglemnet_exp.get_verification_score(separation_vector, 0, samples=kwargs['samples'], lambd=verif, savefig=False, feature=name, method='InterFaceGAN_' + str(extr))
|
549 |
+
print(f'Score for method InterfaceGAN on {name}:', score)
|
550 |
+
|
551 |
+
scores.append([space, 'InterFaceGAN', name, score, 'extremes method:' + str(extr) + 'verification lambda:' + str(verif), ', '.join(list(separation_vector.astype(str)))])
|
552 |
+
|
553 |
+
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
554 |
+
print(score_df)
|
555 |
+
score_df.to_csv(join(repo_folder, f'data/scores_{name}.csv'))
|
556 |
+
|
557 |
def main():
|
558 |
repo_folder = '.'
|
559 |
annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
|
|
|
570 |
colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
|
571 |
'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
|
572 |
'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
|
573 |
+
colors_list = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue',
|
574 |
+
'Blue', 'Purple', 'Pink']
|
575 |
|
576 |
scores = []
|
577 |
+
kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False],
|
578 |
+
'num_factors':[1, 5, 10, 20], 'cutout': [None], 'max_lambda':[18, 6],
|
579 |
+
'samples':30, 'lambda_verif':[14, 7], 'extremes':[True, False]}
|
580 |
+
continuous = False
|
581 |
+
specific_examples = [53139, 99376, 16, 99585, 40851, 70, 17703, 44, 52628,
|
582 |
+
99884, 52921, 46180, 19995, 40920, 554]
|
583 |
|
584 |
+
if specific_examples is not None:
|
585 |
+
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space='w', colors_list=colors_list, compute_s=False)
|
586 |
+
|
587 |
+
separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=True, num_factors=10, cutout=None)
|
588 |
+
# separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method='LR', C=0.1)
|
589 |
+
for specific_example in specific_examples:
|
590 |
+
seed = specific_example
|
591 |
+
for i, color in enumerate(colors_list):
|
592 |
+
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-9, max_epsilon=9, savefig=True, save_separately=True, feature=color, method='StyleSpace' + '_' + str(True) + '_' + str(10) + '_' + str(None))
|
593 |
+
|
594 |
+
return
|
595 |
+
|
596 |
+
for space in ['w', ]: #'z', 's'
|
597 |
print('Launching experiment with space:', space)
|
598 |
+
|
599 |
+
if continuous:
|
600 |
+
continous_experiment('Saturation', 'S1', repo_folder, model, annotations, df, space, colors_list, kwargs)
|
601 |
+
continous_experiment('Value', 'V1', repo_folder, model, annotations, df, space, colors_list, kwargs)
|
602 |
+
continous_experiment('Red', 'R1', repo_folder, model, annotations, df, space, colors_list, kwargs)
|
603 |
+
continous_experiment('Green', 'G1', repo_folder, model, annotations, df, space, colors_list, kwargs)
|
604 |
+
continous_experiment('Blue', 'B1', repo_folder, model, annotations, df, space, colors_list, kwargs)
|
605 |
+
break
|
606 |
+
|
607 |
+
print('Launching Hue experiment')
|
608 |
+
variable = 'H1'
|
609 |
+
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False, variable=variable)
|
610 |
|
611 |
+
for method in ['StyleSpace', 'InterFaceGAN',]: #'GANSpace'
|
612 |
if space != 's' and method == 'InterFaceGAN':
|
613 |
print('Now obtaining separation vector for using InterfaceGAN')
|
614 |
for met in kwargs['CL method']:
|
615 |
for c in kwargs['C']:
|
616 |
separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
|
617 |
for i, color in enumerate(colors_list):
|
618 |
+
print(f'Generating images with variations for color {color}')
|
619 |
for s in range(30):
|
620 |
seed = random.randint(0,100000)
|
621 |
for eps in kwargs['max_lambda']:
|
622 |
+
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=str(method) + '_' + str(met) + '_' + str(c) + '_' + str(len(colors_list)) + '_' + str(variable))
|
623 |
|
624 |
print('Finally obtaining verification score')
|
625 |
for verif in kwargs['lambda_verif']:
|
|
|
629 |
scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
|
630 |
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
631 |
print(score_df)
|
632 |
+
score_df.to_csv(join(repo_folder, f'data/scores_InterfaceGAN_{variable}_{len(colors_list)}.csv'))
|
633 |
|
634 |
|
635 |
elif method == 'StyleSpace':
|
|
|
639 |
for cutout in kwargs['cutout']:
|
640 |
separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
|
641 |
for i, color in enumerate(colors_list):
|
642 |
+
print(f'Generating images with variations for color {color}')
|
643 |
for s in range(30):
|
644 |
seed = random.randint(0,100000)
|
645 |
for eps in kwargs['max_lambda']:
|
646 |
+
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method + '_' + str(num_factors) + '_' + str(cutout) + '_' + str(sign) + '_' + str(len(colors_list)) + '_' + str(variable))
|
647 |
|
648 |
print('Finally obtaining verification score')
|
649 |
for verif in kwargs['lambda_verif']:
|
|
|
653 |
scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
|
654 |
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
655 |
print(score_df)
|
656 |
+
score_df.to_csv(join(repo_folder, f'data/scores_StyleSpace_{variable}_{len(colors_list)}.csv'))
|
657 |
|
658 |
if space == 'w' and method == 'GANSpace':
|
659 |
print('Now obtaining separation vector for using GANSpace')
|
660 |
separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
|
661 |
+
print(separation_vectors.shape)
|
662 |
for s in range(30):
|
663 |
print('Generating images with variations')
|
664 |
seed = random.randint(0,100000)
|
665 |
for i in range(100):
|
666 |
for eps in kwargs['max_lambda']:
|
667 |
+
disentanglemnet_exp.generate_changes(seed, separation_vectors.T[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature='dimension_' + str(i), method=method)
|
668 |
|
669 |
score = None
|
670 |
+
scores.append([space, method, 'PCA', score, '100', ', '.join(list(separation_vectors.T[i].astype(str)))])
|
671 |
else:
|
672 |
print('Skipping', method, 'on space', space)
|
673 |
continue
|
674 |
|
|
|
|
|
675 |
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
|
676 |
print(score_df)
|
677 |
+
score_df.to_csv(join(repo_folder, 'data/scores_{}.csv'.format(pd.to_datetime.now().strftime("%Y-%m-%d_%H%M%S"))))
|
678 |
|
679 |
if __name__ == "__main__":
|
680 |
main()
|
check_images.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from sklearn.svm import SVC
|
7 |
+
from sklearn.decomposition import PCA
|
8 |
+
from sklearn.linear_model import LogisticRegression, LinearRegression
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
|
11 |
+
from tqdm import tqdm
|
12 |
+
import random
|
13 |
+
from os.path import join
|
14 |
+
import os
|
15 |
+
import pickle
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import PIL
|
21 |
+
from PIL import Image, ImageColor
|
22 |
+
|
23 |
+
import sys
|
24 |
+
sys.path.append('backend')
|
25 |
+
from color_annotations import extract_color
|
26 |
+
from networks_stylegan3 import *
|
27 |
+
sys.path.append('.')
|
28 |
+
|
29 |
+
import dnnlib
|
30 |
+
import legacy
|
31 |
+
|
32 |
+
def hex2rgb(hex_value):
|
33 |
+
h = hex_value.strip("#")
|
34 |
+
rgb = tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
|
35 |
+
return rgb
|
36 |
+
|
37 |
+
def rgb2hsv(r, g, b):
|
38 |
+
# Normalize R, G, B values
|
39 |
+
r, g, b = r / 255.0, g / 255.0, b / 255.0
|
40 |
+
|
41 |
+
# h, s, v = hue, saturation, value
|
42 |
+
max_rgb = max(r, g, b)
|
43 |
+
min_rgb = min(r, g, b)
|
44 |
+
difference = max_rgb-min_rgb
|
45 |
+
|
46 |
+
# if max_rgb and max_rgb are equal then h = 0
|
47 |
+
if max_rgb == min_rgb:
|
48 |
+
h = 0
|
49 |
+
|
50 |
+
# if max_rgb==r then h is computed as follows
|
51 |
+
elif max_rgb == r:
|
52 |
+
h = (60 * ((g - b) / difference) + 360) % 360
|
53 |
+
|
54 |
+
# if max_rgb==g then compute h as follows
|
55 |
+
elif max_rgb == g:
|
56 |
+
h = (60 * ((b - r) / difference) + 120) % 360
|
57 |
+
|
58 |
+
# if max_rgb=b then compute h
|
59 |
+
elif max_rgb == b:
|
60 |
+
h = (60 * ((r - g) / difference) + 240) % 360
|
61 |
+
|
62 |
+
# if max_rgb==zero then s=0
|
63 |
+
if max_rgb == 0:
|
64 |
+
s = 0
|
65 |
+
else:
|
66 |
+
s = (difference / max_rgb) * 100
|
67 |
+
|
68 |
+
# compute v
|
69 |
+
v = max_rgb * 100
|
70 |
+
# return rounded values of H, S and V
|
71 |
+
return tuple(map(round, (h, s, v)))
|
72 |
+
|
73 |
+
|
74 |
+
class DisentanglementBase:
|
75 |
+
def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s=False, variable='H1', categorical=True):
|
76 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
77 |
+
print('Using device', self.device)
|
78 |
+
self.repo_folder = repo_folder
|
79 |
+
self.model = model.to(self.device)
|
80 |
+
self.annotations = annotations
|
81 |
+
self.df = df
|
82 |
+
self.space = space
|
83 |
+
self.categorical = categorical
|
84 |
+
self.variable = variable
|
85 |
+
|
86 |
+
self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
|
87 |
+
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
|
88 |
+
'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128',
|
89 |
+
'L13_256_128', 'L14_256_3']
|
90 |
+
self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128]
|
91 |
+
self.decoding_layers = 16
|
92 |
+
self.colors_list = colors_list
|
93 |
+
|
94 |
+
self.to_hsv()
|
95 |
+
if compute_s:
|
96 |
+
self.get_s_space()
|
97 |
+
|
98 |
+
|
99 |
+
def to_hsv(self):
|
100 |
+
"""
|
101 |
+
The tohsv function takes the top 3 colors of each image and converts them to HSV values.
|
102 |
+
It then adds these values as new columns in the dataframe.
|
103 |
+
|
104 |
+
:param self: Allow the function to access the dataframe
|
105 |
+
:return: The dataframe with the new columns added
|
106 |
+
:doc-author: Trelent
|
107 |
+
"""
|
108 |
+
print('Adding HSV encoding')
|
109 |
+
self.df['H1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
|
110 |
+
self.df['H2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
|
111 |
+
self.df['H3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
|
112 |
+
|
113 |
+
self.df['S1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
|
114 |
+
self.df['S2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
|
115 |
+
self.df['S3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
|
116 |
+
|
117 |
+
self.df['V1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
|
118 |
+
self.df['V2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
|
119 |
+
self.df['V3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
|
120 |
+
|
121 |
+
print('Adding RGB encoding')
|
122 |
+
self.df['R1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
|
123 |
+
self.df['R2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
|
124 |
+
self.df['R3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
|
125 |
+
|
126 |
+
self.df['G1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
|
127 |
+
self.df['G2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
|
128 |
+
self.df['G3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
|
129 |
+
|
130 |
+
self.df['B1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
|
131 |
+
self.df['B2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
|
132 |
+
self.df['B3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
|
133 |
+
return self.df
|
134 |
+
|
135 |
+
def get_encoded_latent(self):
|
136 |
+
# ... (existing code for getX)
|
137 |
+
if self.space.lower() == 'w':
|
138 |
+
X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512))
|
139 |
+
elif self.space.lower() == 'z':
|
140 |
+
X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512))
|
141 |
+
elif self.space.lower() == 's':
|
142 |
+
concat_v = []
|
143 |
+
for i in range(len(self.annotations['w_vectors'])):
|
144 |
+
concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1))
|
145 |
+
X = np.array(concat_v)
|
146 |
+
X = X[:, 0, :]
|
147 |
+
else:
|
148 |
+
Exception("Sorry, option not available, select among Z, W, S")
|
149 |
+
|
150 |
+
print('Shape embedding:', X.shape)
|
151 |
+
return X
|
152 |
+
|
153 |
+
def get_train_val(self, extremes=False):
|
154 |
+
X = self.get_encoded_latent()
|
155 |
+
y = np.array(self.df[self.variable].values)
|
156 |
+
if self.categorical:
|
157 |
+
y_cat = pd.cut(y,
|
158 |
+
bins=[x * 360 / len(self.colors_list) if x < len(self.colors_list)
|
159 |
+
else 360 for x in range(len(self.colors_list) + 1)],
|
160 |
+
labels=self.colors_list
|
161 |
+
).fillna(self.colors_list[0])
|
162 |
+
x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
|
163 |
+
else:
|
164 |
+
if extremes:
|
165 |
+
# Calculate the number of elements to consider (10% of array size)
|
166 |
+
num_elements = int(0.2 * len(y))
|
167 |
+
# Get indices of the top num_elements maximum values
|
168 |
+
top_indices = np.argpartition(array, -num_elements)[-num_elements:]
|
169 |
+
bottom_indices = np.argpartition(array, -num_elements)[:num_elements]
|
170 |
+
y_ext = y[top_indices + bottom_indices, :]
|
171 |
+
X_ext = X[top_indices + bottom_indices, :]
|
172 |
+
x_train, x_val, y_train, y_val = train_test_split(X_ext, y_ext, test_size=0.2)
|
173 |
+
else:
|
174 |
+
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
|
175 |
+
return x_train, x_val, y_train, y_val
|
176 |
+
|
177 |
+
def generate_orig_image(self, vec, seed=False):
|
178 |
+
"""
|
179 |
+
The generate_original_image function takes in a latent vector and the model,
|
180 |
+
and returns an image generated from that latent vector.
|
181 |
+
|
182 |
+
|
183 |
+
:param z: Generate the image
|
184 |
+
:param model: Generate the image
|
185 |
+
:return: A pil image
|
186 |
+
:doc-author: Trelent
|
187 |
+
"""
|
188 |
+
G = self.model.to(self.device) # type: ignore
|
189 |
+
# Labels.
|
190 |
+
label = torch.zeros([1, G.c_dim], device=self.device)
|
191 |
+
if seed:
|
192 |
+
seed = vec
|
193 |
+
vec = self.annotations['z_vectors'][seed]
|
194 |
+
|
195 |
+
Z = torch.from_numpy(vec.copy()).to(self.device)
|
196 |
+
img = G(Z, label, truncation_psi=1, noise_mode='const')
|
197 |
+
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
198 |
+
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
199 |
+
return img
|
200 |
+
|
201 |
+
def main():
|
202 |
+
repo_folder = '.'
|
203 |
+
annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
|
204 |
+
with open(annotations_file, 'rb') as f:
|
205 |
+
annotations = pickle.load(f)
|
206 |
+
|
207 |
+
df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv')
|
208 |
+
df = pd.read_csv(df_file).fillna('#000000')
|
209 |
+
|
210 |
+
model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl')
|
211 |
+
with dnnlib.util.open_url(model_file) as f:
|
212 |
+
model = legacy.load_network_pkl(f)['G_ema'] # type: ignore
|
213 |
+
|
214 |
+
colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
|
215 |
+
'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
|
216 |
+
'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
|
217 |
+
colors_list = ['Red Orange', 'Yellow', 'Green', 'Light Blue',
|
218 |
+
'Blue', 'Purple', 'Pink']
|
219 |
+
|
220 |
+
|
221 |
+
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space='w', colors_list=colors_list)
|
222 |
+
# x_train, x_val, y_train, y_val = disentanglemnet_exp.get_train_val()
|
223 |
+
# print(colors_list)
|
224 |
+
# print(np.unique(y_train, return_counts=True))
|
225 |
+
|
226 |
+
|
227 |
+
# for i, color in enumerate(colors_list):
|
228 |
+
# idxs = np.where(y_train == color)
|
229 |
+
# x_color = x_train[idxs][:30, :]
|
230 |
+
# print(x_color.shape)
|
231 |
+
# print('Generating images of color ' + color)
|
232 |
+
# for j, vec in enumerate(x_color):
|
233 |
+
# vec = np.expand_dims(vec, axis=0)
|
234 |
+
# img = disentanglemnet_exp.generate_orig_image(vec)
|
235 |
+
# img.save(f'{repo_folder}/colors_test/color_{color}_{j}.png')
|
236 |
+
|
237 |
+
df = disentanglemnet_exp.to_hsv()
|
238 |
+
df['color'] = pd.cut(df['H1'],
|
239 |
+
bins=[x * 360 / len(colors_list) if x < len(colors_list)
|
240 |
+
else 360 for x in range(len(colors_list) + 1)],
|
241 |
+
labels=colors_list
|
242 |
+
).fillna(colors_list[0])
|
243 |
+
|
244 |
+
print(df['color'].value_counts())
|
245 |
+
df['seed'] = df['fname'].str.split('/').apply(lambda x: x[-1]).str.replace('seed', '').str.replace('.png','').astype(int)
|
246 |
+
print(df[df['seed'] == 3][['H1', 'S1', 'V1', 'R1', 'B1', 'G1']])
|
247 |
+
for i, color in enumerate(colors_list):
|
248 |
+
idxs = df['color'] == color
|
249 |
+
x_color = df['seed'][idxs][:30]
|
250 |
+
print('Generating images of color ' + color)
|
251 |
+
for j, vec in enumerate(x_color):
|
252 |
+
img = disentanglemnet_exp.generate_orig_image(int(vec), seed=True)
|
253 |
+
img.save(f'{repo_folder}/colors_test/color_{color}_{j}corrected.png')
|
254 |
+
|
255 |
+
if __name__ == "__main__":
|
256 |
+
main()
|
data/scores_Blue.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a54439734a2f8f107f6236ad8732ab049639e4d565617cc7f3d89e79d9c29428
|
3 |
+
size 27620
|
data/scores_Green.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b276b23fb5c1abb8226e1e0790f7c77509950f1eb2443cab71f154267a4c7c83
|
3 |
+
size 27491
|
data/scores_InterfaceGAN_H1_8.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f9b22fba3e1a4dabf3ab59342536c707f9c55b04c257d1da49c6a6be9bac082
|
3 |
+
size 919823
|
data/scores_Red.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ae0e9ee9a907881b19542eb19cd98947b9f3d2a3ccca61f6dd25823a3fb8e82
|
3 |
+
size 27619
|
data/scores_Saturation.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac053d8ed3f6514f4ac7b3c4a279aac2889bee02c68acc7d4ad45ccb88bf84c3
|
3 |
+
size 27564
|
data/scores_StyleSpace_H1_8.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bfc5681aa827b2be07cb0ce00eefd6464e2f0836216b884858b5866ffb8aa80
|
3 |
+
size 360571
|
data/scores_Value.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b9251b5089425cbf640894e576ce648011b81b2e2a6a74b35e898984a595efa
|
3 |
+
size 27516
|
data/textile_annotated_files/seeds0000-100000_S.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3178623075
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88dffd2abe21053c375420a6babcb12e93f2925ccdd192a09e51ab917f9ab0f3
|
3 |
size 3178623075
|
test_disentanglement.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --time=1-00:00:00
|
3 |
+
#SBATCH --mem=32GB
|
4 |
+
#SBATCH --gres gpu:1
|
5 |
+
|
6 |
+
module load v100
|
7 |
+
module load cuda
|
8 |
+
module load mamba
|
9 |
+
source activate test
|
10 |
+
|
11 |
+
python DisentanglementBase.py
|
12 |
+
conda deactivate
|