Spaces:
Runtime error
Runtime error
textile disentanglement
Browse files- backend/disentangle_concepts.py +26 -389
- pages/1_Textiles_Disentanglement.py +82 -99
backend/disentangle_concepts.py
CHANGED
@@ -12,67 +12,7 @@ from PIL import Image, ImageColor
|
|
12 |
from .color_annotations import extract_color
|
13 |
|
14 |
|
15 |
-
|
16 |
-
def get_separation_space(type_bin, annotations, df, samples=200, method='LR', C=0.1, latent_space='Z'):
|
17 |
-
"""
|
18 |
-
The get_separation_space function takes in a type_bin, annotations, and df.
|
19 |
-
It then samples 100 of the most representative abstracts for that type_bin and 100 of the least representative abstracts for that type_bin.
|
20 |
-
It then trains an SVM or logistic regression model on these 200 samples to find a separation space between them.
|
21 |
-
The function returns this separation space as well as how many nodes are important in this separation space.
|
22 |
-
|
23 |
-
:param type_bin: Select the type of abstracts to be used for training
|
24 |
-
:param annotations: Access the z_vectors
|
25 |
-
:param df: Get the abstracts that are used for training
|
26 |
-
:param samples: Determine how many samples to take from the top and bottom of the distribution
|
27 |
-
:param method: Specify the classifier to use
|
28 |
-
:param C: Control the regularization strength
|
29 |
-
:return: The weights of the linear classifier
|
30 |
-
:doc-author: Trelent
|
31 |
-
"""
|
32 |
-
|
33 |
-
if latent_space == 'Z':
|
34 |
-
col = 'z_vectors'
|
35 |
-
else:
|
36 |
-
col = 'w_vectors'
|
37 |
-
|
38 |
-
if len(type_bin) == 1:
|
39 |
-
type_bin = type_bin[0]
|
40 |
-
if type(type_bin) == str:
|
41 |
-
abstracts = np.array([float(ann) for ann in df[type_bin]])
|
42 |
-
abstract_idxs = list(np.argsort(abstracts))[:samples]
|
43 |
-
repr_idxs = list(np.argsort(abstracts))[-samples:]
|
44 |
-
X = np.array([annotations[col][i] for i in abstract_idxs+repr_idxs])
|
45 |
-
elif len(type_bin) == 2:
|
46 |
-
print('Using two concepts for separation space')
|
47 |
-
first_concept = np.array([float(ann) for ann in df[type_bin[0]]])
|
48 |
-
second_concept = np.array([float(ann) for ann in df[type_bin[1]]])
|
49 |
-
first_idxs = list(np.argsort(first_concept))[:samples]
|
50 |
-
second_idxs = list(np.argsort(second_concept))[:samples]
|
51 |
-
X = np.array([annotations[col][i] for i in first_idxs+second_idxs])
|
52 |
-
else:
|
53 |
-
print('Error: type_bin must be either a string or a list of strings of len 2')
|
54 |
-
return
|
55 |
-
|
56 |
-
X = X.reshape((2*samples, 512))
|
57 |
-
y = np.array([1]*samples + [0]*samples)
|
58 |
-
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
|
59 |
-
if method == 'SVM':
|
60 |
-
svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C)
|
61 |
-
svc.fit(x_train, y_train)
|
62 |
-
print('Val performance SVM', svc.score(x_val, y_val))
|
63 |
-
imp_features = (np.abs(svc.coef_) > 0.2).sum()
|
64 |
-
imp_nodes = np.where(np.abs(svc.coef_) > 0.2)[1]
|
65 |
-
return svc.coef_ / np.linalg.norm(clf.coef_), imp_features, imp_nodes, np.round(clf.score(x_val, y_val),2)
|
66 |
-
elif method == 'LR':
|
67 |
-
clf = LogisticRegression(random_state=0, C=C)
|
68 |
-
clf.fit(x_train, y_train)
|
69 |
-
print('Val performance logistic regression', clf.score(x_val, y_val))
|
70 |
-
imp_features = (np.abs(clf.coef_) > 0.15).sum()
|
71 |
-
imp_nodes = np.where(np.abs(clf.coef_) > 0.15)[1]
|
72 |
-
return clf.coef_ / np.linalg.norm(clf.coef_), imp_features, imp_nodes, np.round(clf.score(x_val, y_val),2)
|
73 |
-
|
74 |
-
|
75 |
-
def regenerate_images(model, z, decision_boundary, min_epsilon=-3, max_epsilon=3, count=5, latent_space='Z', layers=None, number=3):
|
76 |
"""
|
77 |
The regenerate_images function takes a model, z, and decision_boundary as input. It then
|
78 |
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
|
@@ -91,46 +31,39 @@ def regenerate_images(model, z, decision_boundary, min_epsilon=-3, max_epsilon=3
|
|
91 |
device = torch.device('cpu')
|
92 |
G = model.to(device) # type: ignore
|
93 |
|
94 |
-
if False:
|
95 |
-
decision_boundary = z - (np.dot(z, decision_boundary.T) / np.dot(decision_boundary, decision_boundary.T)) * decision_boundary
|
96 |
# Labels.
|
97 |
label = torch.zeros([1, G.c_dim], device=device)
|
98 |
|
99 |
z = torch.from_numpy(z.copy()).to(device)
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
repetitions = 16 if number == 3 else 14
|
103 |
-
lambdas = np.linspace(min_epsilon, max_epsilon, count)
|
104 |
-
images = []
|
105 |
-
# Generate images.
|
106 |
-
for _, lambda_ in enumerate(tqdm(lambdas)):
|
107 |
-
z_0 = z + lambda_ * decision_boundary
|
108 |
-
if latent_space == 'Z':
|
109 |
-
W_0 = G.mapping(z_0, label, truncation_psi=1).to(torch.float32)
|
110 |
-
W = G.mapping(z, label, truncation_psi=1).to(torch.float32)
|
111 |
-
else:
|
112 |
-
W_0 = z_0.expand((repetitions, -1)).unsqueeze(0).to(torch.float32)
|
113 |
-
W = z.expand((repetitions, -1)).unsqueeze(0).to(torch.float32)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
|
125 |
-
return
|
126 |
-
|
127 |
-
|
128 |
-
def generate_joint_effect(model, z, decision_boundaries, min_epsilon=-3, max_epsilon=3, count=5, latent_space='Z'):
|
129 |
-
decision_boundary_joint = np.sum(decision_boundaries, axis=0)
|
130 |
-
print(decision_boundary_joint.shape)
|
131 |
-
return regenerate_images(model, z, decision_boundary_joint, min_epsilon=min_epsilon, max_epsilon=max_epsilon, count=count, latent_space=latent_space)
|
132 |
|
133 |
-
|
|
|
134 |
"""
|
135 |
The generate_original_image function takes in a latent vector and the model,
|
136 |
and returns an image generated from that latent vector.
|
@@ -141,7 +74,7 @@ def generate_original_image(z, model, latent_space='Z', number=3):
|
|
141 |
:return: A pil image
|
142 |
:doc-author: Trelent
|
143 |
"""
|
144 |
-
repetitions = 16
|
145 |
|
146 |
device = torch.device('cpu')
|
147 |
G = model.to(device) # type: ignore
|
@@ -152,304 +85,8 @@ def generate_original_image(z, model, latent_space='Z', number=3):
|
|
152 |
img = G(z, label, truncation_psi=1, noise_mode='const')
|
153 |
else:
|
154 |
W = torch.from_numpy(np.repeat(z, repetitions, axis=0).reshape(1, repetitions, z.shape[1]).copy()).to(device)
|
155 |
-
print(W.shape)
|
156 |
img = G.synthesis(W, noise_mode='const')
|
157 |
|
158 |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
159 |
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
160 |
|
161 |
-
|
162 |
-
def get_concepts_vectors(concepts, annotations, df, samples=100, method='LR', C=0.1, latent_space='Z'):
|
163 |
-
"""
|
164 |
-
The get_concepts_vectors function takes in a list of concepts, a dictionary of annotations, and the dataframe containing all the images.
|
165 |
-
It returns two things:
|
166 |
-
1) A numpy array with shape (len(concepts), 512) where each row is an embedding vector for one concept.
|
167 |
-
2) A set containing all nodes that are important in this separation space.
|
168 |
-
|
169 |
-
:param concepts: Specify the concepts to be used in the analysis
|
170 |
-
:param annotations: Get the annotations for each concept
|
171 |
-
:param df: Get the annotations for each concept
|
172 |
-
:param samples: Determine the number of samples to use in training the logistic regression model
|
173 |
-
:param method: Choose the method used to train the model
|
174 |
-
:param C: Control the regularization of the logistic regression
|
175 |
-
:return: The vectors of the concepts and the nodes that are in common for all concepts
|
176 |
-
:doc-author: Trelent
|
177 |
-
"""
|
178 |
-
important_nodes = []
|
179 |
-
performances = []
|
180 |
-
vectors = np.zeros((len(concepts), 512))
|
181 |
-
for i, conc in enumerate(concepts):
|
182 |
-
vec, _, imp_nodes, performance = get_separation_space(conc, annotations, df, samples=samples, method=method, C=C, latent_space=latent_space)
|
183 |
-
vectors[i,:] = vec
|
184 |
-
performances.append(performance)
|
185 |
-
important_nodes.append(set(imp_nodes))
|
186 |
-
|
187 |
-
# reducer = UMAP(n_neighbors=3, # default 15, The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation.
|
188 |
-
# n_components=3, # default 2, The dimension of the space to embed into.
|
189 |
-
# min_dist=0.1, # default 0.1, The effective minimum distance between embedded points.
|
190 |
-
# spread=2.0, # default 1.0, The effective scale of embedded points. In combination with ``min_dist`` this determines how clustered/clumped the embedded points are.
|
191 |
-
# random_state=0, # default: None, If int, random_state is the seed used by the random number generator;
|
192 |
-
# )
|
193 |
-
|
194 |
-
# projection = reducer.fit_transform(vectors)
|
195 |
-
nodes_in_common = set.intersection(*important_nodes)
|
196 |
-
return vectors, nodes_in_common, performances
|
197 |
-
|
198 |
-
|
199 |
-
def get_verification_score(color_id, decision_boundary, model, annotations, samples=100, latent_space='W'):
|
200 |
-
listlen = len(annotations['fname'])
|
201 |
-
items = random.sample(range(listlen), samples)
|
202 |
-
hue_low = color_id * 256 / 12
|
203 |
-
hue_high = (color_id + 1) * 256 / 12
|
204 |
-
hue_mean = (hue_low + hue_high) / 2
|
205 |
-
print(int(hue_low), int(hue_high), int(hue_mean))
|
206 |
-
distances = []
|
207 |
-
distances_orig = []
|
208 |
-
for iterator in tqdm(items):
|
209 |
-
if latent_space == 'Z':
|
210 |
-
z = annotations['z_vectors'][iterator]
|
211 |
-
else:
|
212 |
-
z = annotations['w_vectors'][iterator]
|
213 |
-
|
214 |
-
images, lambdas = regenerate_images(model, z, decision_boundary, min_epsilon=0, max_epsilon=1, count=2, latent_space=latent_space)
|
215 |
-
colors_orig = extract_color(images[0], 5, 1, None)
|
216 |
-
h_old, s_old, v_old = ImageColor.getcolor(colors_orig[0], 'HSV')
|
217 |
-
colors_new = extract_color(images[1], 5, 1, None)
|
218 |
-
h_new, s_new, v_new = ImageColor.getcolor(colors_new[0], 'HSV')
|
219 |
-
print(h_old, h_new)
|
220 |
-
distance = np.abs(hue_mean - h_new)
|
221 |
-
distances.append(distance)
|
222 |
-
distance_orig = np.abs(hue_mean - h_old)
|
223 |
-
distances_orig.append(distance_orig)
|
224 |
-
|
225 |
-
return np.round(np.mean(np.array(distances)), 4), np.round(np.mean(np.array(distances_orig)), 4)
|
226 |
-
|
227 |
-
|
228 |
-
def get_verification_score_clip(concept, decision_boundary, model, annotations, samples=100, latent_space='Z'):
|
229 |
-
import open_clip
|
230 |
-
import os
|
231 |
-
import random
|
232 |
-
from tqdm import tqdm
|
233 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
234 |
-
|
235 |
-
|
236 |
-
model_clip, _, preprocess = open_clip.create_model_and_transforms('ViT-L-14', pretrained='laion2b_s32b_b82k')
|
237 |
-
tokenizer = open_clip.get_tokenizer('ViT-L-14')
|
238 |
-
|
239 |
-
# Prepare the text queries
|
240 |
-
#@markdown _in the form pre_prompt {label}_:
|
241 |
-
pre_prompt = "Artwork, " #@param {type:"string"}
|
242 |
-
text_descriptions = [f"{pre_prompt}{label}" for label in [concept]]
|
243 |
-
text_tokens = tokenizer(text_descriptions)
|
244 |
-
|
245 |
-
|
246 |
-
listlen = len(annotations['fname'])
|
247 |
-
items = random.sample(range(listlen), samples)
|
248 |
-
changes = []
|
249 |
-
for iterator in tqdm(items):
|
250 |
-
chunk_imgs = []
|
251 |
-
chunk_ids = []
|
252 |
-
|
253 |
-
if latent_space == 'Z':
|
254 |
-
z = annotations['z_vectors'][iterator]
|
255 |
-
else:
|
256 |
-
z = annotations['w_vectors'][iterator]
|
257 |
-
images, lambdas = regenerate_images(model, z, decision_boundary, min_epsilon=0, max_epsilon=1, count=2, latent_space=latent_space)
|
258 |
-
for im,l in zip(images, lambdas):
|
259 |
-
|
260 |
-
chunk_imgs.append(preprocess(im.convert("RGB")))
|
261 |
-
chunk_ids.append(l)
|
262 |
-
|
263 |
-
image_input = torch.tensor(np.stack(chunk_imgs))
|
264 |
-
|
265 |
-
with torch.no_grad(), torch.cuda.amp.autocast():
|
266 |
-
text_features = model_clip.encode_text(text_tokens).float()
|
267 |
-
image_features = model_clip.encode_image(image_input).float()
|
268 |
-
|
269 |
-
# Rescale features
|
270 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
271 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
272 |
-
|
273 |
-
# Analyze featues
|
274 |
-
text_probs = (100.0 * image_features.cpu().numpy() @ text_features.cpu().numpy().T)#.softmax(dim=-1)
|
275 |
-
|
276 |
-
change = max(text_probs[1][0].item() - text_probs[0][0].item(), 0)
|
277 |
-
changes.append(change)
|
278 |
-
|
279 |
-
return np.round(np.mean(np.array(changes)), 4)
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
def tohsv(df):
|
284 |
-
df['H1'] = df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
|
285 |
-
df['H2'] = df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
|
286 |
-
df['H3'] = df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
|
287 |
-
|
288 |
-
df['S1'] = df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
|
289 |
-
df['S2'] = df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
|
290 |
-
df['S3'] = df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
|
291 |
-
|
292 |
-
df['V1'] = df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
|
293 |
-
df['V2'] = df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
|
294 |
-
df['V3'] = df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
|
295 |
-
return df
|
296 |
-
|
297 |
-
|
298 |
-
def rest_from_style(x, styles, layer):
|
299 |
-
dtype = torch.float16 if (getattr(model.synthesis, layer).use_fp16 and device=='cuda') else torch.float32
|
300 |
-
if getattr(model.synthesis, layer).is_torgb:
|
301 |
-
print(layer, getattr(model.synthesis, layer).is_torgb)
|
302 |
-
weight_gain = 1 / np.sqrt(getattr(model.synthesis, layer).in_channels * (getattr(model.synthesis, layer).conv_kernel ** 2))
|
303 |
-
styles = styles * weight_gain
|
304 |
-
input_gain = getattr(model.synthesis, layer).magnitude_ema.rsqrt().to(dtype)
|
305 |
-
# Execute modulated conv2d.
|
306 |
-
x = modulated_conv2d(x=x.to(dtype), w=getattr(model.synthesis, layer).weight.to(dtype), s=styles.to(dtype),
|
307 |
-
padding=getattr(model.synthesis, layer).conv_kernel-1, demodulate=(not getattr(model.synthesis, layer).is_torgb), input_gain=input_gain.to(dtype))
|
308 |
-
# Execute bias, filtered leaky ReLU, and clamping.
|
309 |
-
gain = 1 if getattr(model.synthesis, layer).is_torgb else np.sqrt(2)
|
310 |
-
slope = 1 if getattr(model.synthesis, layer).is_torgb else 0.2
|
311 |
-
x = filtered_lrelu.filtered_lrelu(x=x, fu=getattr(model.synthesis, layer).up_filter, fd=getattr(model.synthesis, layer).down_filter,
|
312 |
-
b=getattr(model.synthesis, layer).bias.to(x.dtype),
|
313 |
-
up=getattr(model.synthesis, layer).up_factor, down=getattr(model.synthesis, layer).down_factor,
|
314 |
-
padding=getattr(model.synthesis, layer).padding,
|
315 |
-
gain=gain, slope=slope, clamp=getattr(model.synthesis, layer).conv_clamp)
|
316 |
-
return x
|
317 |
-
|
318 |
-
|
319 |
-
def getS(w):
|
320 |
-
w_torch = torch.from_numpy(w).to('cpu')
|
321 |
-
W = w_torch.expand((16, -1)).unsqueeze(0)
|
322 |
-
s = []
|
323 |
-
s.append(model.synthesis.input.affine(W[0, 0].unsqueeze(0)).numpy())
|
324 |
-
s.append(model.synthesis.L0_36_512.affine(W[0, 1].unsqueeze(0)).numpy())
|
325 |
-
s.append(model.synthesis.L1_36_512.affine(W[0, 2].unsqueeze(0)).numpy())
|
326 |
-
s.append(model.synthesis.L2_36_512.affine(W[0, 3].unsqueeze(0)).numpy())
|
327 |
-
s.append(model.synthesis.L3_52_512.affine(W[0, 4].unsqueeze(0)).numpy())
|
328 |
-
s.append(model.synthesis.L4_52_512.affine(W[0, 5].unsqueeze(0)).numpy())
|
329 |
-
s.append(model.synthesis.L5_84_512.affine(W[0, 6].unsqueeze(0)).numpy())
|
330 |
-
s.append(model.synthesis.L6_84_512.affine(W[0, 7].unsqueeze(0)).numpy())
|
331 |
-
s.append(model.synthesis.L7_148_512.affine(W[0, 8].unsqueeze(0)).numpy())
|
332 |
-
s.append(model.synthesis.L8_148_512.affine(W[0, 9].unsqueeze(0)).numpy())
|
333 |
-
s.append(model.synthesis.L9_148_362.affine(W[0, 10].unsqueeze(0)).numpy())
|
334 |
-
s.append(model.synthesis.L10_276_256.affine(W[0, 11].unsqueeze(0)).numpy())
|
335 |
-
s.append(model.synthesis.L11_276_181.affine(W[0, 12].unsqueeze(0)).numpy())
|
336 |
-
s.append(model.synthesis.L12_276_128.affine(W[0, 13].unsqueeze(0)).numpy())
|
337 |
-
s.append(model.synthesis.L13_256_128.affine(W[0, 14].unsqueeze(0)).numpy())
|
338 |
-
s.append(model.synthesis.L14_256_3.affine(W[0, 15].unsqueeze(0)).numpy())
|
339 |
-
return s
|
340 |
-
|
341 |
-
def detect_attribute_specific_channels(positives, all, sign=False):
|
342 |
-
""" Formula from StyleSpace Analysis """
|
343 |
-
mp = np.mean(all, axis=0)
|
344 |
-
sp = np.std(all, axis=0)
|
345 |
-
de = (positives - mp) / sp
|
346 |
-
meu = np.mean(de, axis=0)
|
347 |
-
seu = np.std(de, axis=0)
|
348 |
-
if sign:
|
349 |
-
thetau = meu / seu
|
350 |
-
else:
|
351 |
-
thetau = np.abs(meu) / seu
|
352 |
-
return thetau
|
353 |
-
|
354 |
-
def all_variance_based_disentanglements(labels, x, y, k=10, sign=False, cutout=0.28):
|
355 |
-
seps = []
|
356 |
-
sorted_vals = []
|
357 |
-
for lbl in labels:
|
358 |
-
positives = x[np.where(y == lbl)]
|
359 |
-
variations = detect_attribute_specific_channels(positives, x, sign=sign)
|
360 |
-
if sign:
|
361 |
-
argsorted_vars_pos = np.argsort(variations)[-k//2:]
|
362 |
-
# print(argsorted_vars_pos)
|
363 |
-
argsorted_vars_neg = np.argsort(variations)[:k//2]
|
364 |
-
if cutout:
|
365 |
-
beyond_cutout = np.where(np.abs(variations) > cutout)
|
366 |
-
# print(beyond_cutout)
|
367 |
-
argsorted_vars_pos_int = np.intersect1d(argsorted_vars_pos, beyond_cutout)
|
368 |
-
argsorted_vars_neg_int = np.intersect1d(argsorted_vars_neg, beyond_cutout)
|
369 |
-
# print(argsorted_vars_pos)
|
370 |
-
if len(argsorted_vars_neg_int) > 0:
|
371 |
-
argsorted_vars_neg = np.array(argsorted_vars_neg_int)
|
372 |
-
if len(argsorted_vars_pos_int) > 0:
|
373 |
-
argsorted_vars_pos = np.array(argsorted_vars_pos_int)
|
374 |
-
|
375 |
-
|
376 |
-
else:
|
377 |
-
argsorted_vars = np.argsort(variations)[-k:]
|
378 |
-
|
379 |
-
|
380 |
-
sorted_vals.append(np.sort(variations))
|
381 |
-
separation_vector_onehot /= np.linalg.norm(separation_vector_onehot)
|
382 |
-
seps.append(separation_vector_onehot)
|
383 |
-
return seps, sorted_vals
|
384 |
-
|
385 |
-
def generate_flexible_images(w, change_vectors, lambdas=1, device='cpu'):
|
386 |
-
w_torch = torch.from_numpy(w).to('cpu')
|
387 |
-
if len(change_vectors) != 17:
|
388 |
-
w_torch = w_torch + lambdas * change_vectors[0]
|
389 |
-
W = w_torch.expand((16, -1)).unsqueeze(0)
|
390 |
-
|
391 |
-
x = model.synthesis.input(W[0,0].unsqueeze(0))
|
392 |
-
for i, layer in enumerate(layers):
|
393 |
-
if i < 2:
|
394 |
-
continue
|
395 |
-
style = getattr(model.synthesis, layer).affine(W[0, i-1].unsqueeze(0))
|
396 |
-
if len(change_vectors) != 17:
|
397 |
-
change = torch.from_numpy(change_vectors[i].copy()).unsqueeze(0).to(device)
|
398 |
-
style = torch.add(style, change, alpha=lambdas)
|
399 |
-
x = rest_from_style(x, style, layer)
|
400 |
-
|
401 |
-
if model.synthesis.output_scale != 1:
|
402 |
-
x = x * model.synthesis.output_scale
|
403 |
-
|
404 |
-
img = (x.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
405 |
-
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
406 |
-
|
407 |
-
return img
|
408 |
-
|
409 |
-
def get_original_pos(top_positions, bottom_positions=None, space='s', sign=True,
|
410 |
-
shapes=[[512, 4, 512, 512, 512, 512, 512, 512, 512,
|
411 |
-
512, 512, 512, 362, 256, 181, 128, 128]],
|
412 |
-
layers=['w', 'input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
|
413 |
-
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
|
414 |
-
'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128',
|
415 |
-
'L13_256_128', 'L14_256_3'], ):
|
416 |
-
if space == 's':
|
417 |
-
current_idx = 0
|
418 |
-
vectors = []
|
419 |
-
for i, (leng, layer) in enumerate(zip(shapes, layers)):
|
420 |
-
arr = np.zeros(leng)
|
421 |
-
for top_position in top_positions:
|
422 |
-
if top_position >= current_idx and top_position < current_idx + leng:
|
423 |
-
arr[top_position - current_idx] = 1
|
424 |
-
for bottom_position in bottom_positions:
|
425 |
-
if sign:
|
426 |
-
if bottom_position >= current_idx and bottom_position < current_idx + leng:
|
427 |
-
arr[bottom_position - current_idx] = 1
|
428 |
-
arr = arr / (np.linalg.norm(arr) + 0.000001)
|
429 |
-
vectors.append(arr)
|
430 |
-
current_idx += leng
|
431 |
-
else:
|
432 |
-
if sign:
|
433 |
-
vectors = np.zeros(512)
|
434 |
-
vectors[top_positions] = 1
|
435 |
-
vectors[bottom_positions] = -1
|
436 |
-
else:
|
437 |
-
vectors = np.zeros(512)
|
438 |
-
vectors[top_positions] = 1
|
439 |
-
return vectors
|
440 |
-
|
441 |
-
def getX(annotations, space='s'):
|
442 |
-
if space == 'x':
|
443 |
-
X = np.array(annotations['w_vectors']).reshape((len(annotations['w_vectors']), 512))
|
444 |
-
elif space == 's':
|
445 |
-
concat_v = []
|
446 |
-
for i in range(len(annotations['w_vectors'])):
|
447 |
-
concat_v.append(np.concatenate([annotations['w_vectors'][i]] + annotations['s_vectors'][i], axis=1))
|
448 |
-
|
449 |
-
X = np.array(concat_v)
|
450 |
-
X = X[:, 0, :]
|
451 |
-
print(X.shape)
|
452 |
-
|
453 |
-
return X
|
454 |
-
|
455 |
-
|
|
|
12 |
from .color_annotations import extract_color
|
13 |
|
14 |
|
15 |
+
def generate_composite_images(model, z, decision_boundaries, lambdas, latent_space='W'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"""
|
17 |
The regenerate_images function takes a model, z, and decision_boundary as input. It then
|
18 |
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
|
|
|
31 |
device = torch.device('cpu')
|
32 |
G = model.to(device) # type: ignore
|
33 |
|
|
|
|
|
34 |
# Labels.
|
35 |
label = torch.zeros([1, G.c_dim], device=device)
|
36 |
|
37 |
z = torch.from_numpy(z.copy()).to(device)
|
38 |
+
repetitions = 16
|
39 |
+
z_0 = z.copy()
|
40 |
+
|
41 |
+
for decision_boundary, lmbd in zip(decision_boundaries, lambdas):
|
42 |
+
decision_boundary = torch.from_numpy(decision_boundary.copy()).to(device)
|
43 |
+
z_0 = z_0 + int(lmbd) * decision_boundary
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
if latent_space == 'Z':
|
47 |
+
W_0 = G.mapping(z_0, label, truncation_psi=1).to(torch.float32)
|
48 |
+
# W = G.mapping(z, label, truncation_psi=1).to(torch.float32)
|
49 |
+
else:
|
50 |
+
W_0 = z_0.expand((repetitions, -1)).unsqueeze(0).to(torch.float32)
|
51 |
+
# W = z.expand((repetitions, -1)).unsqueeze(0).to(torch.float32)
|
52 |
+
|
53 |
+
# if layers:
|
54 |
+
# W_f = torch.empty_like(W).copy_(W).to(torch.float32)
|
55 |
+
# W_f[:, layers, :] = W_0[:, layers, :]
|
56 |
+
# img = G.synthesis(W_f, noise_mode='const')
|
57 |
+
# else:
|
58 |
+
img = G.synthesis(W_0, noise_mode='const')
|
59 |
|
60 |
+
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
61 |
+
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
62 |
|
63 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
|
66 |
+
def generate_original_image(z, model, latent_space='W'):
|
67 |
"""
|
68 |
The generate_original_image function takes in a latent vector and the model,
|
69 |
and returns an image generated from that latent vector.
|
|
|
74 |
:return: A pil image
|
75 |
:doc-author: Trelent
|
76 |
"""
|
77 |
+
repetitions = 16
|
78 |
|
79 |
device = torch.device('cpu')
|
80 |
G = model.to(device) # type: ignore
|
|
|
85 |
img = G(z, label, truncation_psi=1, noise_mode='const')
|
86 |
else:
|
87 |
W = torch.from_numpy(np.repeat(z, repetitions, axis=0).reshape(1, repetitions, z.shape[1]).copy()).to(device)
|
|
|
88 |
img = G.synthesis(W, noise_mode='const')
|
89 |
|
90 |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
91 |
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/1_Textiles_Disentanglement.py
CHANGED
@@ -31,11 +31,21 @@ annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl'
|
|
31 |
with open(annotations_file, 'rb') as f:
|
32 |
annotations = pickle.load(f)
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if 'image_id' not in st.session_state:
|
36 |
st.session_state.image_id = 0
|
37 |
if 'color_ids' not in st.session_state:
|
38 |
-
st.session_state.concept_ids =[
|
39 |
if 'space_id' not in st.session_state:
|
40 |
st.session_state.space_id = 'W'
|
41 |
|
@@ -47,61 +57,6 @@ st.header('Input')
|
|
47 |
input_col_1, input_col_2, input_col_3 = st.columns(3)
|
48 |
# --------------------------- INPUT column 1 ---------------------------
|
49 |
with input_col_1:
|
50 |
-
with st.form('text_form'):
|
51 |
-
|
52 |
-
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
53 |
-
st.write('**Choose two options to disentangle**')
|
54 |
-
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique']))
|
55 |
-
|
56 |
-
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv')
|
57 |
-
labels = list(ann_df.columns)
|
58 |
-
labels.remove('ID')
|
59 |
-
labels.remove('Unnamed: 0')
|
60 |
-
|
61 |
-
concept_ids = st.multiselect('Concepts:', tuple(labels), max_selections=2, default=[labels[2], labels[3]])
|
62 |
-
|
63 |
-
st.write('**Choose a latent space to disentangle**')
|
64 |
-
space_id = st.selectbox('Space:', tuple(['W', 'Z']))
|
65 |
-
|
66 |
-
choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')
|
67 |
-
|
68 |
-
if choose_text_button:
|
69 |
-
concept_ids = list(concept_ids)
|
70 |
-
st.session_state.concept_ids = concept_ids
|
71 |
-
space_id = str(space_id)
|
72 |
-
st.session_state.space_id = space_id
|
73 |
-
# st.write(image_id, st.session_state.image_id)
|
74 |
-
|
75 |
-
# ---------------------------- SET UP OUTPUT ------------------------------
|
76 |
-
epsilon_container = st.empty()
|
77 |
-
st.header('Output')
|
78 |
-
st.subheader('Concept vector')
|
79 |
-
|
80 |
-
# perform attack container
|
81 |
-
# header_col_1, header_col_2, header_col_3, header_col_4, header_col_5 = st.columns([1,1,1,1,1])
|
82 |
-
# output_col_1, output_col_2, output_col_3, output_col_4, output_col_5 = st.columns([1,1,1,1,1])
|
83 |
-
header_col_1, header_col_2 = st.columns([5,1])
|
84 |
-
output_col_1, output_col_2 = st.columns([5,1])
|
85 |
-
|
86 |
-
st.subheader('Derivations along the concept vector')
|
87 |
-
|
88 |
-
# prediction error container
|
89 |
-
error_container = st.empty()
|
90 |
-
smoothgrad_header_container = st.empty()
|
91 |
-
|
92 |
-
# smoothgrad container
|
93 |
-
smooth_head_1, smooth_head_2, smooth_head_3, smooth_head_4, smooth_head_5 = st.columns([1,1,1,1,1])
|
94 |
-
smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgrad_col_5 = st.columns([1,1,1,1,1])
|
95 |
-
|
96 |
-
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
97 |
-
with output_col_1:
|
98 |
-
separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=150)
|
99 |
-
# st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
|
100 |
-
st.write('Concept vector', separation_vector)
|
101 |
-
header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
|
102 |
-
|
103 |
-
# ----------------------------- INPUT column 2 & 3 ----------------------------
|
104 |
-
with input_col_2:
|
105 |
with st.form('image_form'):
|
106 |
|
107 |
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
@@ -113,34 +68,83 @@ with input_col_2:
|
|
113 |
random_id = st.form_submit_button('Generate a random image')
|
114 |
|
115 |
if random_id:
|
116 |
-
image_id = random.randint(0,
|
117 |
st.session_state.image_id = image_id
|
118 |
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
|
119 |
|
120 |
if choose_image_button:
|
121 |
image_id = int(image_id)
|
122 |
st.session_state.image_id = int(image_id)
|
123 |
-
# st.write(image_id, st.session_state.image_id)
|
124 |
|
125 |
-
with
|
126 |
-
with st.form('
|
|
|
|
|
|
|
|
|
127 |
st.write('**Set range of change**')
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
|
139 |
-
# ----------------------------
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
if st.session_state.space_id == 'Z':
|
146 |
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
|
@@ -149,30 +153,9 @@ else:
|
|
149 |
|
150 |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
151 |
|
152 |
-
|
153 |
-
# input_image = original_image_dict['image']
|
154 |
-
# input_label = original_image_dict['label']
|
155 |
-
# input_id = original_image_dict['id']
|
156 |
-
|
157 |
-
with smoothgrad_col_3:
|
158 |
st.image(img)
|
159 |
-
smooth_head_3.write(f'Base image, predicted as {top_pred}')
|
160 |
-
|
161 |
-
|
162 |
-
images, lambdas = regenerate_images(model, original_image_vec, separation_vector, min_epsilon=-(int(epsilon)), max_epsilon=int(epsilon), latent_space=st.session_state.space_id, layers=layers)
|
163 |
-
|
164 |
-
with smoothgrad_col_1:
|
165 |
-
st.image(images[0])
|
166 |
-
smooth_head_1.write(f'Change of {np.round(lambdas[0], 2)}')
|
167 |
-
|
168 |
-
with smoothgrad_col_2:
|
169 |
-
st.image(images[1])
|
170 |
-
smooth_head_2.write(f'Change of {np.round(lambdas[1], 2)}')
|
171 |
-
|
172 |
-
with smoothgrad_col_4:
|
173 |
-
st.image(images[3])
|
174 |
-
smooth_head_4.write(f'Change of {np.round(lambdas[3], 2)}')
|
175 |
|
176 |
-
with
|
177 |
-
|
178 |
-
|
|
|
31 |
with open(annotations_file, 'rb') as f:
|
32 |
annotations = pickle.load(f)
|
33 |
|
34 |
+
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv')
|
35 |
+
concept_vectors['vector'] = np.array([float(x) for x in concept_vectors['vector'].str.split(', ')])
|
36 |
+
concept_vectors['score'] = concept_vectors['score'].astype(float)
|
37 |
+
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index()
|
38 |
+
print(concept_vectors[['vector', 'score']])
|
39 |
+
|
40 |
+
with dnnlib.util.open_url('./data/vase_model_files/network-snapshot-003800.pkl') as f:
|
41 |
+
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
|
42 |
+
|
43 |
+
COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink']
|
44 |
+
|
45 |
if 'image_id' not in st.session_state:
|
46 |
st.session_state.image_id = 0
|
47 |
if 'color_ids' not in st.session_state:
|
48 |
+
st.session_state.concept_ids = COLORS_LIST[-1]
|
49 |
if 'space_id' not in st.session_state:
|
50 |
st.session_state.space_id = 'W'
|
51 |
|
|
|
57 |
input_col_1, input_col_2, input_col_3 = st.columns(3)
|
58 |
# --------------------------- INPUT column 1 ---------------------------
|
59 |
with input_col_1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
with st.form('image_form'):
|
61 |
|
62 |
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
|
|
68 |
random_id = st.form_submit_button('Generate a random image')
|
69 |
|
70 |
if random_id:
|
71 |
+
image_id = random.randint(0, 100000)
|
72 |
st.session_state.image_id = image_id
|
73 |
chosen_image_id_input.number_input('Image ID:', format='%d', step=1, value=st.session_state.image_id)
|
74 |
|
75 |
if choose_image_button:
|
76 |
image_id = int(image_id)
|
77 |
st.session_state.image_id = int(image_id)
|
|
|
78 |
|
79 |
+
with input_col_2:
|
80 |
+
with st.form('text_form'):
|
81 |
+
|
82 |
+
st.write('**Choose color to vary**')
|
83 |
+
type_col = st.selectbox('Color:', tuple(COLORS_LIST), value=st.session_state.concepts_ids)
|
84 |
+
|
85 |
st.write('**Set range of change**')
|
86 |
+
chosen_color_lambda_input = st.empty()
|
87 |
+
color_lambda = chosen_color_lambda_input.number_input('Lambda:', min_value=0, step=1, value=7)
|
88 |
+
color_lambda_button = st.form_submit_button('Choose the defined lambda')
|
89 |
+
|
90 |
+
if choose_text_button:
|
91 |
+
st.session_state.concept_ids = type_col
|
92 |
+
st.session_state.space_id = space_id
|
93 |
+
|
94 |
+
with input_col_3:
|
95 |
+
with st.form('text_form'):
|
96 |
+
|
97 |
+
st.write('**Saturation variation**')
|
98 |
+
chosen_saturation_lambda_input = st.empty()
|
99 |
+
saturation_lambda = chosen_saturation_lambda_input.number_input('Lambda:', min_value=0, step=1)
|
100 |
+
saturation_lambda_button = st.form_submit_button('Choose the defined lambda')
|
101 |
+
|
102 |
+
st.write('**Value variation**')
|
103 |
+
chosen_value_lambda_input = st.empty()
|
104 |
+
value_lambda = chosen_value_lambda_input.number_input('Lambda:', min_value=0, step=1)
|
105 |
+
value_lambda_button = st.form_submit_button('Choose the defined lambda')
|
106 |
+
|
107 |
+
# with input_col_4:
|
108 |
+
# with st.form('Network specifics:'):
|
109 |
+
# st.write('**Choose a latent space to use**')
|
110 |
+
# space_id = st.selectbox('Space:', tuple(['W']))
|
111 |
+
# choose_text_button = st.form_submit_button('Choose the defined concept and space to disentangle')
|
112 |
+
|
113 |
+
# st.write('**Select hierarchical levels to manipulate**')
|
114 |
+
# layers = st.multiselect('Layers:', tuple(range(14)))
|
115 |
+
# if len(layers) == 0:
|
116 |
+
# layers = None
|
117 |
+
# print(layers)
|
118 |
+
# layers_button = st.form_submit_button('Choose the defined layers')
|
119 |
|
120 |
|
121 |
+
# ---------------------------- SET UP OUTPUT ------------------------------
|
122 |
+
epsilon_container = st.empty()
|
123 |
+
st.header('Image Manipulation')
|
124 |
+
st.subheader('Using selected directions')
|
125 |
|
126 |
+
header_col_1, header_col_2 = st.columns([1,1])
|
127 |
+
output_col_1, output_col_2 = st.columns([1,1])
|
128 |
+
|
129 |
+
# # prediction error container
|
130 |
+
# error_container = st.empty()
|
131 |
+
# smoothgrad_header_container = st.empty()
|
132 |
+
|
133 |
+
# # smoothgrad container
|
134 |
+
# smooth_head_1, smooth_head_2, = st.columns([1,1,])
|
135 |
+
# smoothgrad_col_1, smoothgrad_col_2 = st.columns([1,1])
|
136 |
+
|
137 |
+
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
|
138 |
+
with header_col_1:
|
139 |
+
st.write(f'Original image')
|
140 |
+
|
141 |
+
with header_col_2:
|
142 |
+
color_separation_vector, performance_color = concept_vectors[concept_vectors['color'] == st.session_state.concepts_ids].loc[0, ['vector', 'score']]
|
143 |
+
saturation_separation_vector, performance_saturation = concept_vectors[concept_vectors['color'] == 'Saturation'].loc[0, ['vector', 'score']]
|
144 |
+
value_separation_vector, performance_value = concept_vectors[concept_vectors['color'] == 'Value'].loc[0, ['vector', 'score']]
|
145 |
+
st.write(f'Change in {st.session_state.concepts_ids} of {np.round(color_lambda, 2)}, in saturation of {np.round(saturation_lambda, 2)}, in value of {np.round(value_lambda, 2)}. - Performance color vector: {performance_color}, saturation vector: {performance_saturation}, value vector: {performance_value}')
|
146 |
+
|
147 |
+
# ---------------------------- DISPLAY COL 2 ROW 1 ------------------------------
|
148 |
|
149 |
if st.session_state.space_id == 'Z':
|
150 |
original_image_vec = annotations['z_vectors'][st.session_state.image_id]
|
|
|
153 |
|
154 |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
155 |
|
156 |
+
with output_col_1:
|
|
|
|
|
|
|
|
|
|
|
157 |
st.image(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
with output_col_2:
|
160 |
+
image_updated = generate_composite_images(model, original_image_vec, [separation_vector_color, saturation_separation_vector, value_separation_vector], lambdas=[color_lambda, saturation_lambda, value_lambda])
|
161 |
+
st.image(image_updated)
|