ludusc commited on
Commit
bb24e10
1 Parent(s): f7614f0

argmax maybe will work=

Browse files
pages/3_Oxford_Vases_Disentanglement.py CHANGED
@@ -90,7 +90,7 @@ smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgr
90
 
91
  # ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
92
  with output_col_1:
93
- separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=200)
94
  # st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
95
  st.write('Concept vector', separation_vector)
96
  header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
@@ -143,7 +143,8 @@ else:
143
  original_image_vec = annotations['w_vectors'][st.session_state.image_id]
144
 
145
  img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
146
- top_pred = ann_df.iloc[st.session_state.image_id].idxmax()
 
147
  # input_image = original_image_dict['image']
148
  # input_label = original_image_dict['label']
149
  # input_id = original_image_dict['id']
 
90
 
91
  # ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
92
  with output_col_1:
93
+ separation_vector, number_important_features, imp_nodes, performance = get_separation_space(concept_ids, annotations, ann_df, latent_space=st.session_state.space_id, samples=100)
94
  # st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
95
  st.write('Concept vector', separation_vector)
96
  header_col_1.write(f'Concept {st.session_state.concept_ids} - Space {st.session_state.space_id} - Number of relevant nodes: {number_important_features} - Val classification performance: {performance}')# - Nodes {",".join(list(imp_nodes))}')
 
143
  original_image_vec = annotations['w_vectors'][st.session_state.image_id]
144
 
145
  img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
146
+ print(ann_df.iloc[st.session_state.image_id, list(ann_df.column) - 'ID'])
147
+ top_pred = ann_df.iloc[st.session_state.image_id, list(ann_df.columns) - 'ID'].idxmax()
148
  # input_image = original_image_dict['image']
149
  # input_label = original_image_dict['label']
150
  # input_id = original_image_dict['id']