Spaces:
Runtime error
Runtime error
more choices to dis
Browse files
data/vase_annotated_files/sim_Fabric_seeds0000-20000.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20fa48320e20998aad5665610083843705608a5f06ff081e4395ee4b5ac9cba3
|
3 |
+
size 9731011
|
data/vase_annotated_files/sim_Provenance_seeds0000-20000.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a421ffd119eee312249c9fbd05ac65460849e71f538d05fad223cb55423f315f
|
3 |
+
size 18066428
|
data/vase_annotated_files/sim_Technique_seeds0000-20000.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d3425e15d76d47a8829783cadbd7072698083df199617a8423d5ccb9d88714
|
3 |
+
size 2484876
|
pages/3_Oxford_Vases_Disentanglement.py
CHANGED
@@ -31,8 +31,6 @@ annotations_file = './data/vase_annotated_files/seeds0000-20000.pkl'
|
|
31 |
with open(annotations_file, 'rb') as f:
|
32 |
annotations = pickle.load(f)
|
33 |
|
34 |
-
ann_df = pd.read_csv('./data/vase_annotated_files/sim_Shape Name_seeds0000-20000.csv')
|
35 |
-
labels = ann_df.columns
|
36 |
|
37 |
if 'image_id' not in st.session_state:
|
38 |
st.session_state.image_id = 0
|
@@ -53,7 +51,12 @@ with input_col_1:
|
|
53 |
|
54 |
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
55 |
st.write('**Choose two options to disentangle**')
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
st.write('**Choose a latent space to disentangle**')
|
59 |
space_id = st.selectbox('Space:', tuple(['W', 'Z']))
|
@@ -142,12 +145,8 @@ if st.session_state.space_id == 'Z':
|
|
142 |
else:
|
143 |
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
|
144 |
|
145 |
-
print(ann_df.head())
|
146 |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
147 |
cols = list(ann_df.columns)
|
148 |
-
cols.remove('Unnamed: 0')
|
149 |
-
cols.remove('ID')
|
150 |
-
print(ann_df.loc[st.session_state.image_id, cols])
|
151 |
top_pred = ann_df.loc[st.session_state.image_id, cols].astype(float).idxmax()
|
152 |
# input_image = original_image_dict['image']
|
153 |
# input_label = original_image_dict['label']
|
|
|
31 |
with open(annotations_file, 'rb') as f:
|
32 |
annotations = pickle.load(f)
|
33 |
|
|
|
|
|
34 |
|
35 |
if 'image_id' not in st.session_state:
|
36 |
st.session_state.image_id = 0
|
|
|
51 |
|
52 |
# image_id = st.number_input('Image ID: ', format='%d', step=1)
|
53 |
st.write('**Choose two options to disentangle**')
|
54 |
+
type_col = st.selectbox('Concept category:', tuple(['Provenance', 'Shape Name', 'Fabric', 'Technique']))
|
55 |
+
|
56 |
+
ann_df = pd.read_csv(f'./data/vase_annotated_files/sim_{type_col}_seeds0000-20000.csv')
|
57 |
+
labels = ann_df.columns
|
58 |
+
|
59 |
+
concept_ids = st.multiselect('Concepts:', tuple(labels), max_selections=2, default=[labels[0], labels[1]])
|
60 |
|
61 |
st.write('**Choose a latent space to disentangle**')
|
62 |
space_id = st.selectbox('Space:', tuple(['W', 'Z']))
|
|
|
145 |
else:
|
146 |
original_image_vec = annotations['w_vectors'][st.session_state.image_id]
|
147 |
|
|
|
148 |
img = generate_original_image(original_image_vec, model, latent_space=st.session_state.space_id)
|
149 |
cols = list(ann_df.columns)
|
|
|
|
|
|
|
150 |
top_pred = ann_df.loc[st.session_state.image_id, cols].astype(float).idxmax()
|
151 |
# input_image = original_image_dict['image']
|
152 |
# input_label = original_image_dict['label']
|