import gradio as gr import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from PIL import Image import numpy as np from datetime import datetime import os def array_to_image_path(image_array): if image_array is None: raise ValueError("No image provided. Please upload an image before submitting.") img = Image.fromarray(np.uint8(image_array)) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"image_{timestamp}.png" img.save(filename) return os.path.abspath(filename) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto" ).cuda().eval() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True) @gr.GPU def analyze_iol_report(image): image_path = array_to_image_path(image) prompt = "Extract all ophthalmic measurements including AL, K1, K2, ACD, LT, WTW, and CCT. Calculate IOL power based on formulas like Barrett Universal II, Cooke K6, EVO, Hill-RBF, Hoffer QST, Kane, and PEARL GDS." messages = [ { "role": "user", "content": [ {"type": "image", "image": image_path}, {"type": "text", "text": prompt}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown("Fixed Model - Qwen2-VL-7B for IOL Report Analysis") with gr.Tab(label="IOL Analysis"): with gr.Row(): input_img = gr.Image(label="Upload IOL Report Image") submit_btn = gr.Button(value="Analyze Report") output = gr.Textbox(label="Analysis Result", elem_id="output") submit_btn.click(analyze_iol_report, inputs=[input_img], outputs=[output]) demo.launch()