luiscgp commited on
Commit
e23ce51
1 Parent(s): 1f7abed
ETL/embeddings_base.ipynb CHANGED
@@ -36,9 +36,21 @@
36
  },
37
  {
38
  "cell_type": "code",
39
- "execution_count": null,
40
  "metadata": {},
41
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
42
  "source": [
43
  "preprocessor = PreProcessor(\n",
44
  " clean_empty_lines=True,\n",
@@ -107,6 +119,273 @@
107
  "\n",
108
  "document_store.update_embeddings(retriever, batch_size=10000)"
109
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  }
111
  ],
112
  "metadata": {
@@ -116,7 +395,15 @@
116
  "name": "python3"
117
  },
118
  "language_info": {
 
 
 
 
 
 
119
  "name": "python",
 
 
120
  "version": "3.10.12"
121
  }
122
  },
 
36
  },
37
  {
38
  "cell_type": "code",
39
+ "execution_count": 1,
40
  "metadata": {},
41
+ "outputs": [
42
+ {
43
+ "ename": "NameError",
44
+ "evalue": "name 'PreProcessor' is not defined",
45
+ "output_type": "error",
46
+ "traceback": [
47
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
48
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
49
+ "\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 5\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m preprocessor \u001b[39m=\u001b[39m PreProcessor(\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m clean_empty_lines\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m clean_whitespace\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m clean_header_footer\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m split_by\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39msentence\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m split_length\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m split_overlap\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m split_respect_sentence_boundary\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m all_docs \u001b[39m=\u001b[39m convert_files_to_docs(dir_path\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m./Fontes/Wiki_Pages/\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m docs_default \u001b[39m=\u001b[39m preprocessor\u001b[39m.\u001b[39mprocess(all_docs)\n",
50
+ "\u001b[0;31mNameError\u001b[0m: name 'PreProcessor' is not defined"
51
+ ]
52
+ }
53
+ ],
54
  "source": [
55
  "preprocessor = PreProcessor(\n",
56
  " clean_empty_lines=True,\n",
 
119
  "\n",
120
  "document_store.update_embeddings(retriever, batch_size=10000)"
121
  ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": []
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": 10,
133
+ "metadata": {},
134
+ "outputs": [
135
+ {
136
+ "name": "stderr",
137
+ "output_type": "stream",
138
+ "text": [
139
+ "[nltk_data] Downloading package punkt to /home/luid/nltk_data...\n",
140
+ "[nltk_data] Package punkt is already up-to-date!\n",
141
+ "[nltk_data] Downloading package averaged_perceptron_tagger to\n",
142
+ "[nltk_data] /home/luid/nltk_data...\n",
143
+ "[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.\n"
144
+ ]
145
+ },
146
+ {
147
+ "ename": "NotImplementedError",
148
+ "evalue": "Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')",
149
+ "output_type": "error",
150
+ "traceback": [
151
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
152
+ "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)",
153
+ "\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 12\u001b[0m line \u001b[0;36m1\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m palavras \u001b[39m=\u001b[39m word_tokenize(sentenca, language\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mportuguese\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m \u001b[39m# POS-tagging das palavras\u001b[39;00m\n\u001b[0;32m---> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m pos_tags \u001b[39m=\u001b[39m pos_tag(palavras, lang\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mpor\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=15'>16</a>\u001b[0m \u001b[39m# Exibindo os resultados\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=16'>17</a>\u001b[0m \u001b[39mprint\u001b[39m(pos_tags)\n",
154
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:166\u001b[0m, in \u001b[0;36mpos_tag\u001b[0;34m(tokens, tagset, lang)\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 142\u001b[0m \u001b[39mUse NLTK's currently recommended part of speech tagger to\u001b[39;00m\n\u001b[1;32m 143\u001b[0m \u001b[39mtag the given list of tokens.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[39m:rtype: list(tuple(str, str))\u001b[39;00m\n\u001b[1;32m 164\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 165\u001b[0m tagger \u001b[39m=\u001b[39m _get_tagger(lang)\n\u001b[0;32m--> 166\u001b[0m \u001b[39mreturn\u001b[39;00m _pos_tag(tokens, tagset, tagger, lang)\n",
155
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:114\u001b[0m, in \u001b[0;36m_pos_tag\u001b[0;34m(tokens, tagset, tagger, lang)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_pos_tag\u001b[39m(tokens, tagset\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, tagger\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, lang\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[1;32m 112\u001b[0m \u001b[39m# Currently only supports English and Russian.\u001b[39;00m\n\u001b[1;32m 113\u001b[0m \u001b[39mif\u001b[39;00m lang \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39meng\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[0;32m--> 114\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mNotImplementedError\u001b[39;00m(\n\u001b[1;32m 115\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCurrently, NLTK pos_tag only supports English and Russian \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 116\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m(i.e. lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39meng\u001b[39m\u001b[39m'\u001b[39m\u001b[39m or lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m'\u001b[39m\u001b[39m)\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n\u001b[1;32m 118\u001b[0m \u001b[39m# Throws Error if tokens is of string type\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(tokens, \u001b[39mstr\u001b[39m):\n",
156
+ "\u001b[0;31mNotImplementedError\u001b[0m: Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')"
157
+ ]
158
+ }
159
+ ],
160
+ "source": [
161
+ "import nltk\n",
162
+ "from nltk.tokenize import word_tokenize\n",
163
+ "from nltk import pos_tag\n",
164
+ "nltk.download('punkt')\n",
165
+ "nltk.download('averaged_perceptron_tagger')\n",
166
+ "\n",
167
+ "# Sentença de exemplo\n",
168
+ "sentenca = \"O gato está no telhado.\"\n",
169
+ "\n",
170
+ "# Tokenização da sentença em palavras\n",
171
+ "palavras = word_tokenize(sentenca, language='portuguese')\n",
172
+ "\n",
173
+ "# POS-tagging das palavras\n",
174
+ "pos_tags = pos_tag(palavras, lang='por')\n",
175
+ "\n",
176
+ "# Exibindo os resultados\n",
177
+ "print(pos_tags)"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": 3,
183
+ "metadata": {},
184
+ "outputs": [],
185
+ "source": [
186
+ "sentence = \"Eu gosto de programar em Python.\"\n",
187
+ "inputs = tokenizer(sentence, return_tensors=\"pt\")\n",
188
+ "outputs = model(**inputs)"
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "code",
193
+ "execution_count": 8,
194
+ "metadata": {},
195
+ "outputs": [],
196
+ "source": [
197
+ "predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
198
+ "verb_indices = [(i,label) for i, label in enumerate(predicted_labels[0])]"
199
+ ]
200
+ },
201
+ {
202
+ "cell_type": "code",
203
+ "execution_count": 9,
204
+ "metadata": {},
205
+ "outputs": [
206
+ {
207
+ "data": {
208
+ "text/plain": [
209
+ "[(0, tensor(1)),\n",
210
+ " (1, tensor(1)),\n",
211
+ " (2, tensor(1)),\n",
212
+ " (3, tensor(1)),\n",
213
+ " (4, tensor(0)),\n",
214
+ " (5, tensor(0)),\n",
215
+ " (6, tensor(1)),\n",
216
+ " (7, tensor(1)),\n",
217
+ " (8, tensor(0)),\n",
218
+ " (9, tensor(1)),\n",
219
+ " (10, tensor(1))]"
220
+ ]
221
+ },
222
+ "execution_count": 9,
223
+ "metadata": {},
224
+ "output_type": "execute_result"
225
+ }
226
+ ],
227
+ "source": [
228
+ "verb_indices"
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": 7,
234
+ "metadata": {},
235
+ "outputs": [
236
+ {
237
+ "name": "stdout",
238
+ "output_type": "stream",
239
+ "text": [
240
+ "Verbos na sentença: ['gosto', 'de', '##r', 'em', '##thon']\n"
241
+ ]
242
+ }
243
+ ],
244
+ "source": [
245
+ "predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
246
+ "verb_indices = [i for i, label in enumerate(predicted_labels[0]) if label == 1]\n",
247
+ "\n",
248
+ "verbs = [tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][i].item()) for i in verb_indices]\n",
249
+ "print(\"Verbos na sentença:\", verbs)"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "execution_count": 11,
255
+ "metadata": {},
256
+ "outputs": [
257
+ {
258
+ "name": "stderr",
259
+ "output_type": "stream",
260
+ "text": [
261
+ "2023-11-28 18:26:39.155987: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
262
+ "2023-11-28 18:26:39.300399: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
263
+ "2023-11-28 18:26:39.300771: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n"
264
+ ]
265
+ }
266
+ ],
267
+ "source": [
268
+ "import spacy\n",
269
+ "from spacy.lang.pt.examples import sentences "
270
+ ]
271
+ },
272
+ {
273
+ "cell_type": "code",
274
+ "execution_count": 12,
275
+ "metadata": {},
276
+ "outputs": [
277
+ {
278
+ "name": "stdout",
279
+ "output_type": "stream",
280
+ "text": [
281
+ "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares \n",
282
+ "\n",
283
+ "Carros autônomos empurram a responsabilidade do seguro para os fabricantes.São Francisco considera banir os robôs de entrega que andam pelas calçadas \n",
284
+ "\n",
285
+ "Londres é a maior cidade do Reino Unido \n",
286
+ "\n"
287
+ ]
288
+ }
289
+ ],
290
+ "source": [
291
+ "\n",
292
+ "# Alguns exemplos fornecidos pela própria biblioteca\n",
293
+ "for s in sentences:\n",
294
+ " print(s, '\\n')\n",
295
+ "\n"
296
+ ]
297
+ },
298
+ {
299
+ "cell_type": "code",
300
+ "execution_count": 29,
301
+ "metadata": {},
302
+ "outputs": [
303
+ {
304
+ "name": "stdout",
305
+ "output_type": "stream",
306
+ "text": [
307
+ "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares\n"
308
+ ]
309
+ }
310
+ ],
311
+ "source": [
312
+ "# Criando o objeto spacy\n",
313
+ "nlp = spacy.load(\"pt_core_news_lg\")\n",
314
+ "doc = nlp(sentences[0])\n",
315
+ "print(doc.text)\n"
316
+ ]
317
+ },
318
+ {
319
+ "cell_type": "code",
320
+ "execution_count": 34,
321
+ "metadata": {},
322
+ "outputs": [],
323
+ "source": [
324
+ "doc = nlp(\"A amazonia azul e a defesa maritma\")"
325
+ ]
326
+ },
327
+ {
328
+ "cell_type": "code",
329
+ "execution_count": 36,
330
+ "metadata": {},
331
+ "outputs": [],
332
+ "source": [
333
+ "for token in doc:\n",
334
+ " verb_count = 0\n",
335
+ " if token.pos_ == 'VERB':\n",
336
+ " verb_count +=1"
337
+ ]
338
+ },
339
+ {
340
+ "cell_type": "code",
341
+ "execution_count": 37,
342
+ "metadata": {},
343
+ "outputs": [
344
+ {
345
+ "data": {
346
+ "text/plain": [
347
+ "0"
348
+ ]
349
+ },
350
+ "execution_count": 37,
351
+ "metadata": {},
352
+ "output_type": "execute_result"
353
+ }
354
+ ],
355
+ "source": [
356
+ "verb_count"
357
+ ]
358
+ },
359
+ {
360
+ "cell_type": "code",
361
+ "execution_count": 35,
362
+ "metadata": {},
363
+ "outputs": [
364
+ {
365
+ "name": "stdout",
366
+ "output_type": "stream",
367
+ "text": [
368
+ "A DET\n",
369
+ "amazonia NOUN\n",
370
+ "azul ADJ\n",
371
+ "e CCONJ\n",
372
+ "a DET\n",
373
+ "defesa NOUN\n",
374
+ "maritma NOUN\n"
375
+ ]
376
+ }
377
+ ],
378
+ "source": [
379
+ "for token in doc:\n",
380
+ " print(token.text, token.pos_)\n"
381
+ ]
382
+ },
383
+ {
384
+ "cell_type": "code",
385
+ "execution_count": null,
386
+ "metadata": {},
387
+ "outputs": [],
388
+ "source": []
389
  }
390
  ],
391
  "metadata": {
 
395
  "name": "python3"
396
  },
397
  "language_info": {
398
+ "codemirror_mode": {
399
+ "name": "ipython",
400
+ "version": 3
401
+ },
402
+ "file_extension": ".py",
403
+ "mimetype": "text/x-python",
404
  "name": "python",
405
+ "nbconvert_exporter": "python",
406
+ "pygments_lexer": "ipython3",
407
  "version": "3.10.12"
408
  }
409
  },
app.py CHANGED
@@ -168,7 +168,7 @@ def start_haystack():
168
  """
169
  load document store, retriever, entailment checker and create pipeline
170
  """
171
- shutil.copy("./data/pdf_faiss_document_store.db", ".")
172
  document_store = FAISSDocumentStore(
173
  faiss_index_path=f"./data/my_faiss_index.faiss",
174
  faiss_config_path=f"./data/my_faiss_index.json",
@@ -234,7 +234,7 @@ def highlight_cols(s):
234
 
235
  def main():
236
  # Persistent state
237
- set_state_if_absent("statement", "")
238
  set_state_if_absent("answer", "")
239
  set_state_if_absent("results", None)
240
  set_state_if_absent("raw_json", None)
 
168
  """
169
  load document store, retriever, entailment checker and create pipeline
170
  """
171
+ shutil.copy("./data/final_faiss_document_store.db", ".")
172
  document_store = FAISSDocumentStore(
173
  faiss_index_path=f"./data/my_faiss_index.faiss",
174
  faiss_config_path=f"./data/my_faiss_index.json",
 
234
 
235
  def main():
236
  # Persistent state
237
+ # set_state_if_absent("statement", "")
238
  set_state_if_absent("answer", "")
239
  set_state_if_absent("results", None)
240
  set_state_if_absent("raw_json", None)
data/{pdf_faiss_document_store.db → final_faiss_document_store.db} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:15a407b73eb307189e80128045f3a00c14eb00b7a95e63041b6e781a3d6fe954
3
- size 219578368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97bf03de139766204e23d3cef6b5f0aef9d3379d85956beb2dfb82dcdba0191a
3
+ size 272740352
data/my_faiss_index.faiss CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7477f5a961f91d979e668f3ec7c6ad2ca81a2cb2b3dea5ea1f2e17c4a16bbee2
3
- size 502738989
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:204053b0084e69a64a8be6fcd0f331c35c330e0a2771652a9a08a04d2e7cc460
3
+ size 461922349
data/my_faiss_index.json CHANGED
@@ -1 +1 @@
1
- {"similarity": "cosine", "embedding_dim": 512, "sql_url": "sqlite:///pdf_faiss_document_store.db"}
 
1
+ {"similarity": "cosine", "embedding_dim": 512, "sql_url": "sqlite:///final_faiss_document_store.db"}