Spaces:
Runtime error
Runtime error
import base64 | |
from io import BytesIO | |
from fastapi import FastAPI | |
from PIL import Image | |
import torch as th | |
from glide_text2im.download import load_checkpoint | |
from glide_text2im.model_creation import ( | |
create_model_and_diffusion, | |
model_and_diffusion_defaults, | |
model_and_diffusion_defaults_upsampler | |
) | |
print("Loading models...") | |
app = FastAPI() | |
# This notebook supports both CPU and GPU. | |
# On CPU, generating one sample may take on the order of 20 minutes. | |
# On a GPU, it should be under a minute. | |
has_cuda = th.cuda.is_available() | |
device = th.device('cpu' if not has_cuda else 'cuda') | |
# Create base model. | |
options = model_and_diffusion_defaults() | |
options['use_fp16'] = has_cuda | |
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling | |
model, diffusion = create_model_and_diffusion(**options) | |
model.eval() | |
if has_cuda: | |
model.convert_to_fp16() | |
model.to(device) | |
model.load_state_dict(load_checkpoint('base', device)) | |
print('total base parameters', sum(x.numel() for x in model.parameters())) | |
# Create upsampler model. | |
options_up = model_and_diffusion_defaults_upsampler() | |
options_up['use_fp16'] = has_cuda | |
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling | |
model_up, diffusion_up = create_model_and_diffusion(**options_up) | |
model_up.eval() | |
if has_cuda: | |
model_up.convert_to_fp16() | |
model_up.to(device) | |
model_up.load_state_dict(load_checkpoint('upsample', device)) | |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters())) | |
def get_images(batch: th.Tensor): | |
""" Display a batch of images inline. """ | |
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu() | |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3]) | |
Image.fromarray(reshaped.numpy()) | |
# Create a classifier-free guidance sampling function | |
guidance_scale = 3.0 | |
def model_fn(x_t, ts, **kwargs): | |
half = x_t[: len(x_t) // 2] | |
combined = th.cat([half, half], dim=0) | |
model_out = model(combined, ts, **kwargs) | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) | |
eps = th.cat([half_eps, half_eps], dim=0) | |
return th.cat([eps, rest], dim=1) | |
def read_root(): | |
return {"glide!"} | |
def sample(prompt): | |
# Sampling parameters | |
batch_size = 1 | |
# Tune this parameter to control the sharpness of 256x256 images. | |
# A value of 1.0 is sharper, but sometimes results in grainy artifacts. | |
upsample_temp = 0.997 | |
############################## | |
# Sample from the base model # | |
############################## | |
# Create the text tokens to feed to the model. | |
tokens = model.tokenizer.encode(prompt) | |
tokens, mask = model.tokenizer.padded_tokens_and_mask( | |
tokens, options['text_ctx'] | |
) | |
# Create the classifier-free guidance tokens (empty) | |
full_batch_size = batch_size * 2 | |
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask( | |
[], options['text_ctx'] | |
) | |
# Pack the tokens together into model kwargs. | |
model_kwargs = dict( | |
tokens=th.tensor( | |
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device | |
), | |
mask=th.tensor( | |
[mask] * batch_size + [uncond_mask] * batch_size, | |
dtype=th.bool, | |
device=device, | |
), | |
) | |
# Sample from the base model. | |
model.del_cache() | |
samples = diffusion.p_sample_loop( | |
model_fn, | |
(full_batch_size, 3, options["image_size"], options["image_size"]), | |
device=device, | |
clip_denoised=True, | |
progress=True, | |
model_kwargs=model_kwargs, | |
cond_fn=None, | |
)[:batch_size] | |
model.del_cache() | |
############################## | |
# Upsample the 64x64 samples # | |
############################## | |
tokens = model_up.tokenizer.encode(prompt) | |
tokens, mask = model_up.tokenizer.padded_tokens_and_mask( | |
tokens, options_up['text_ctx'] | |
) | |
# Create the model conditioning dict. | |
model_kwargs = dict( | |
# Low-res image to upsample. | |
low_res=((samples+1)*127.5).round()/127.5 - 1, | |
# Text tokens | |
tokens=th.tensor( | |
[tokens] * batch_size, device=device | |
), | |
mask=th.tensor( | |
[mask] * batch_size, | |
dtype=th.bool, | |
device=device, | |
), | |
) | |
# Sample from the base model. | |
model_up.del_cache() | |
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"]) | |
up_samples = diffusion_up.ddim_sample_loop( | |
model_up, | |
up_shape, | |
noise=th.randn(up_shape, device=device) * upsample_temp, | |
device=device, | |
clip_denoised=True, | |
progress=True, | |
model_kwargs=model_kwargs, | |
cond_fn=None, | |
)[:batch_size] | |
model_up.del_cache() | |
# Show the output | |
image = get_images(up_samples) | |
image = to_base64(image) | |
return {"image": image} | |
def to_base64(pil_image): | |
buffered = BytesIO() | |
pil_image.save(buffered, format="JPEG") | |
return base64.b64encode(buffered.getvalue()) | |