lukiod's picture
Update app.py
be730b6 verified
raw
history blame
3.39 kB
import streamlit as st
import torch
from PIL import Image
import gc
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from byaldi import RAGMultiModalModel
# Function to load Byaldi model
@st.cache_resource
def load_byaldi_model():
model = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2", device="cpu")
return model
# Function to load Qwen2-VL model
@st.cache_resource
def load_qwen_model():
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.float32, device_map="cpu"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
return model, processor
# Function to clear GPU memory
def clear_memory():
gc.collect()
torch.cuda.empty_cache()
# Streamlit Interface
st.title("OCR and Visual Language Model Demo")
st.write("Upload an image for OCR extraction and then ask a question about the image.")
# Image uploader
image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if image:
img = Image.open(image)
st.image(img, caption="Uploaded Image", use_column_width=True)
# OCR Extraction with Byaldi
st.write("Extracting text from image...")
byaldi_model = load_byaldi_model()
# Create a temporary index for the uploaded image
with st.spinner("Processing image..."):
byaldi_model.index(img, index_name="temp_index", overwrite=True)
# Perform a dummy search to get the OCR results
ocr_results = byaldi_model.search("Extract all text from the image", k=1)
# Extract the OCR text from the results
if ocr_results:
extracted_text = ocr_results[0].metadata.get("ocr_text", "No text extracted")
else:
extracted_text = "No text extracted"
st.write("Extracted Text:")
st.write(extracted_text)
# Clear Byaldi model from memory
del byaldi_model
clear_memory()
# Text input field for question
question = st.text_input("Ask a question about the image and extracted text")
if question:
st.write("Processing with Qwen2-VL...")
qwen_model, qwen_processor = load_qwen_model()
# Prepare inputs for Qwen2-VL
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": f"Extracted text: {extracted_text}\n\nQuestion: {question}"},
],
}
]
# Prepare for inference
text_input = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, _ = process_vision_info(messages)
inputs = qwen_processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt")
# Move tensors to CPU
inputs = inputs.to("cpu")
# Run the model and generate output
with torch.no_grad():
generated_ids = qwen_model.generate(**inputs, max_new_tokens=128)
# Decode the output text
generated_text = qwen_processor.batch_decode(generated_ids, skip_special_tokens=True)
# Display the response
st.write("Model's response:", generated_text)
# Clear Qwen model from memory
del qwen_model, qwen_processor
clear_memory()