Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from PIL import Image | |
import gc | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
from byaldi import RAGMultiModalModel | |
# Function to load Byaldi model | |
def load_byaldi_model(): | |
model = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2", device="cpu") | |
return model | |
# Function to load Qwen2-VL model | |
def load_qwen_model(): | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.float32, device_map="cpu" | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
return model, processor | |
# Function to clear GPU memory | |
def clear_memory(): | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Streamlit Interface | |
st.title("OCR and Visual Language Model Demo") | |
st.write("Upload an image for OCR extraction and then ask a question about the image.") | |
# Image uploader | |
image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if image: | |
img = Image.open(image) | |
st.image(img, caption="Uploaded Image", use_column_width=True) | |
# OCR Extraction with Byaldi | |
st.write("Extracting text from image...") | |
byaldi_model = load_byaldi_model() | |
# Create a temporary index for the uploaded image | |
with st.spinner("Processing image..."): | |
byaldi_model.index(img, index_name="temp_index", overwrite=True) | |
# Perform a dummy search to get the OCR results | |
ocr_results = byaldi_model.search("Extract all text from the image", k=1) | |
# Extract the OCR text from the results | |
if ocr_results: | |
extracted_text = ocr_results[0].metadata.get("ocr_text", "No text extracted") | |
else: | |
extracted_text = "No text extracted" | |
st.write("Extracted Text:") | |
st.write(extracted_text) | |
# Clear Byaldi model from memory | |
del byaldi_model | |
clear_memory() | |
# Text input field for question | |
question = st.text_input("Ask a question about the image and extracted text") | |
if question: | |
st.write("Processing with Qwen2-VL...") | |
qwen_model, qwen_processor = load_qwen_model() | |
# Prepare inputs for Qwen2-VL | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": img}, | |
{"type": "text", "text": f"Extracted text: {extracted_text}\n\nQuestion: {question}"}, | |
], | |
} | |
] | |
# Prepare for inference | |
text_input = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, _ = process_vision_info(messages) | |
inputs = qwen_processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt") | |
# Move tensors to CPU | |
inputs = inputs.to("cpu") | |
# Run the model and generate output | |
with torch.no_grad(): | |
generated_ids = qwen_model.generate(**inputs, max_new_tokens=128) | |
# Decode the output text | |
generated_text = qwen_processor.batch_decode(generated_ids, skip_special_tokens=True) | |
# Display the response | |
st.write("Model's response:", generated_text) | |
# Clear Qwen model from memory | |
del qwen_model, qwen_processor | |
clear_memory() |