Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
from byaldi import RAGMultiModalModel
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
|
8 |
+
# Model and processor names
|
9 |
+
RAG_MODEL = "vidore/colpali"
|
10 |
+
QWN_MODEL = "Qwen/Qwen2-VL-7B-Instruct"
|
11 |
+
QWN_PROCESSOR = "Qwen/Qwen2-VL-2B-Instruct"
|
12 |
+
|
13 |
+
@st.cache_resource
|
14 |
+
def load_models():
|
15 |
+
RAG = RAGMultiModalModel.from_pretrained(RAG_MODEL)
|
16 |
+
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
QWN_MODEL,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
trust_remote_code=True
|
21 |
+
).cuda().eval()
|
22 |
+
|
23 |
+
processor = AutoProcessor.from_pretrained(QWN_PROCESSOR, trust_remote_code=True)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(QWN_PROCESSOR, trust_remote_code=True)
|
25 |
+
|
26 |
+
return RAG, model, processor, tokenizer
|
27 |
+
|
28 |
+
RAG, model, processor, tokenizer = load_models()
|
29 |
+
|
30 |
+
def document_rag(text_query, image):
|
31 |
+
messages = [
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": [
|
35 |
+
{
|
36 |
+
"type": "image",
|
37 |
+
"image": image,
|
38 |
+
},
|
39 |
+
{"type": "text", "text": text_query},
|
40 |
+
],
|
41 |
+
}
|
42 |
+
]
|
43 |
+
text = tokenizer.apply_chat_template(
|
44 |
+
messages, tokenize=False, add_generation_prompt=True
|
45 |
+
)
|
46 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
47 |
+
inputs = processor(
|
48 |
+
text=[text],
|
49 |
+
images=image_inputs,
|
50 |
+
videos=video_inputs,
|
51 |
+
padding=True,
|
52 |
+
return_tensors="pt",
|
53 |
+
)
|
54 |
+
inputs = inputs.to("cuda")
|
55 |
+
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
56 |
+
generated_ids_trimmed = [
|
57 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
58 |
+
]
|
59 |
+
output_text = tokenizer.batch_decode(
|
60 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
61 |
+
)
|
62 |
+
return output_text[0]
|
63 |
+
|
64 |
+
st.title("Document Processor")
|
65 |
+
|
66 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
67 |
+
text_query = st.text_input("Enter your text query")
|
68 |
+
|
69 |
+
if uploaded_file is not None and text_query:
|
70 |
+
image = Image.open(uploaded_file)
|
71 |
+
|
72 |
+
if st.button("Process Document"):
|
73 |
+
with st.spinner("Processing..."):
|
74 |
+
result = document_rag(text_query, image)
|
75 |
+
st.success("Processing complete!")
|
76 |
+
st.write("Result:", result)
|