import streamlit as st import torch from PIL import Image import gc from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from byaldi import RAGMultiModalModel # Function to load Byaldi model @st.cache_resource def load_byaldi_model(): model = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2", device="cpu") return model # Function to load Qwen2-VL model @st.cache_resource def load_qwen_model(): model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.float32, device_map="cpu" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") return model, processor # Function to clear GPU memory def clear_memory(): gc.collect() torch.cuda.empty_cache() # Streamlit Interface st.title("OCR and Visual Language Model Demo") st.write("Upload an image for OCR extraction and then ask a question about the image.") # Image uploader image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if image: img = Image.open(image) st.image(img, caption="Uploaded Image", use_column_width=True) # OCR Extraction with Byaldi st.write("Extracting text from image...") byaldi_model = load_byaldi_model() # Create a temporary index for the uploaded image with st.spinner("Processing image..."): byaldi_model.index(img, index_name="temp_index", overwrite=True) # Perform a dummy search to get the OCR results ocr_results = byaldi_model.search("Extract all text from the image", k=1) # Extract the OCR text from the results if ocr_results: extracted_text = ocr_results[0].metadata.get("ocr_text", "No text extracted") else: extracted_text = "No text extracted" st.write("Extracted Text:") st.write(extracted_text) # Clear Byaldi model from memory del byaldi_model clear_memory() # Text input field for question question = st.text_input("Ask a question about the image and extracted text") if question: st.write("Processing with Qwen2-VL...") qwen_model, qwen_processor = load_qwen_model() # Prepare inputs for Qwen2-VL messages = [ { "role": "user", "content": [ {"type": "image", "image": img}, {"type": "text", "text": f"Extracted text: {extracted_text}\n\nQuestion: {question}"}, ], } ] # Prepare for inference text_input = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, _ = process_vision_info(messages) inputs = qwen_processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt") # Move tensors to CPU inputs = inputs.to("cpu") # Run the model and generate output with torch.no_grad(): generated_ids = qwen_model.generate(**inputs, max_new_tokens=128) # Decode the output text generated_text = qwen_processor.batch_decode(generated_ids, skip_special_tokens=True) # Display the response st.write("Model's response:", generated_text) # Clear Qwen model from memory del qwen_model, qwen_processor clear_memory()