Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import PIL.Image | |
import numpy as np | |
import random | |
import torch | |
import subprocess | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
import time | |
model_id = "dicoo_model" | |
dpm = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=dpm, torch_dtype=torch.float) | |
def predict(prompt, steps=25, seed=42, guidance_scale=7.5): | |
# cpu info | |
# print(subprocess.check_output(["cat /proc/cpuinfo | grep 'model name' |uniq"], stderr=subprocess.STDOUT).decode("utf8")) | |
print("prompt: ", prompt) | |
print("steps: ", steps) | |
generator = torch.manual_seed(seed) | |
start_time = time.time() | |
image = pipe(prompt, generator=generator, num_inference_steps=steps, guidance_scale=7.5).images[0] | |
print("cost: ", time.time() - start_time) | |
return image | |
md = """ | |
This Spaces app is same as <a href=\"https://huggingface.co/spaces/Intel/dicoo_diffusion\">Intel/dicoo_diffusion</a>, created by Intel AIA/AIPC team with the model fine-tuned with one shot (one image) for a newly introduced object \"dicoo\". To replicate the model fine-tuning, please refer to the code sample in <a href=\"https://github.com/intel/neural-compressor/tree/master/examples/pytorch/diffusion_model/diffusers/textual_inversion\">Intel Neural Compressor</a>. You may also refer to our <a href=\"https://medium.com/intel-analytics-software/personalized-stable-diffusion-with-few-shot-fine-tuning-on-a-single-cpu-f01a3316b13\">blog</a> for more details. | |
**Tips:** | |
1) When inputting prompts, you need to contain the word **<dicoo>** which represents the pretrained object \"dicoo\". | |
2) For better generation, you maybe increase the inference steps. | |
""" | |
random_seed = random.randint(0, 2147483647) | |
gr.Interface( | |
predict, | |
inputs=[ | |
gr.inputs.Textbox(label='Prompt', default='a lovely <dicoo> in red dress and hat, in the snowy and brightly night, with many brightly buildings'), | |
gr.inputs.Slider(1, 100, label='Inference Steps', default=25, step=1), | |
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1), | |
gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1), | |
], | |
outputs=gr.Image(shape=[512, 512], type="pil", elem_id="output_image"), | |
css="#output_image{width: 256px}", | |
title="Demo of dicoo-finetuned-diffusion-model using Intel Neural Compressor 🧨", | |
description=md, | |
).launch() | |