import spaces import gradio as gr import torch from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer from string import punctuation import re from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed device = "cuda:0" if torch.cuda.is_available() else "cpu" repo_id = "PHBJT/french_parler_tts_mini_v0.1" model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." default_description = "A male voice speaks slowly with a very noisy background, displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue." examples = [ [ "La voix humaine est un instrument de musique au-dessus de tous les autres.", "A male voice speaks slowly with a very noisy background, displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue.", None, ], [ "Tout ce qu'un homme est capable d'imaginer, d'autres hommes seront capables de le réaliser.", "A male voice delivers a slightly expressive and animated speech with a moderate speed. The recording features a low-pitch voice, creating a close-sounding audio experience.", None, ], [ "La machine elle-même, si perfectionnée qu'on la suppose, n'est qu'un outil.", "A male voice provides a monotone yet slightly fast delivery, with a very close recording that almost has no background noise.", None, ], [ "Le progrès fait naître plus de besoins qu'il n'en satisfait.", "A female voice, in a very poor recording quality, delivers slightly expressive and animated words with a fast pace. There's a high level of background noise and a very distant-sounding reverberation. The voice is slightly higher pitched than average.", None, ], ] number_normalizer = EnglishNumberNormalizer() def preprocess(text): text = number_normalizer(text).strip() text = text.replace("-", " ") if text[-1] not in punctuation: text = f"{text}." abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' def separate_abb(chunk): chunk = chunk.replace(".","") print(chunk) return " ".join(chunk) abbreviations = re.findall(abbreviations_pattern, text) for abv in abbreviations: if abv in text: text = text.replace(abv, separate_abb(abv)) return text @spaces.GPU def gen_tts(text, description): inputs = tokenizer(description.strip(), return_tensors="pt").to(device) prompt = tokenizer(preprocess(text), return_tensors="pt").to(device) set_seed(SEED) generation = model.generate( input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0 ) audio_arr = generation.cpu().numpy().squeeze() return SAMPLE_RATE, audio_arr def extract_text(file): from pypdf import PdfReader reader = PdfReader(file) number_of_pages = len(reader.pages) text = ''.join(page.extract_text() for page in reader.pages[:10]) return text with gr.Blocks() as demo: gr.Markdown("""# PDF reader Un lecteur pdf construit avec [MeloTTS](https://github.com/myshell-ai/MeloTTS). ### Comment l'utiliser ? 1. Téléversez le document pdf à lire. 2. Cliquez sur "Extraire le texte" pour extraire les 10 premières pages. 3. Cliquez sur "Réciter le texte" pour générer l'audio.""") with gr.Group(): speaker_description = gr.Textbox(value='A male voice delivers a slightly expressive and animated speech with a quick speed. The recording features a low-pitch voice, creating a close-sounding audio experience.', label='Description de la voix') file = gr.File(label="Document à lire") btn_extract = gr.Button('Extraire le texte', variant='primary') text = gr.Textbox(label="Texte extrait") btn = gr.Button('Réciter le texte', variant='primary') audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out") btn_extract.click(extract_text, inputs=[file], outputs=[text]) btn.click(gen_tts, inputs=[text, speaker_description], outputs=[audio_out]) gr.Markdown('Demo by [m-ric](https://x.com/AymericRoucher).') demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True, share=True)