m-ric HF staff commited on
Commit
459e74a
1 Parent(s): 2876fcd

First commit

Browse files
Files changed (4) hide show
  1. app.py +352 -3
  2. release_date_mapping.json +857 -0
  3. requirements.txt +7 -0
  4. utils.py +234 -0
app.py CHANGED
@@ -1,7 +1,356 @@
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
  demo.launch()
 
1
+ import os
2
+ import pickle
3
+
4
+ import pandas as pd
5
+ import numpy as np
6
  import gradio as gr
7
+ from datetime import datetime
8
+ from huggingface_hub import HfApi
9
+ from apscheduler.schedulers.background import BackgroundScheduler
10
+ import plotly.graph_objects as go
11
+
12
+ from utils import (
13
+ KEY_TO_CATEGORY_NAME,
14
+ CAT_NAME_TO_EXPLANATION,
15
+ download_latest_data_from_space,
16
+ get_constants,
17
+ update_release_date_mapping,
18
+ format_data,
19
+ get_trendlines,
20
+ find_crossover_point,
21
+ sigmoid_transition
22
+ )
23
+
24
+ ###################
25
+ ### Initialize scheduler
26
+ ###################
27
+
28
+
29
+ def restart_space():
30
+ HfApi(token=os.getenv("HF_TOKEN", None)).restart_space(
31
+ repo_id="andrewrreed/closed-vs-open-arena-elo"
32
+ )
33
+ print(f"Space restarted on {datetime.now()}")
34
+
35
+
36
+ # restart the space every day at 9am
37
+ scheduler = BackgroundScheduler()
38
+ scheduler.add_job(restart_space, "cron", day_of_week="mon-sun", hour=7, minute=0)
39
+ scheduler.start()
40
+
41
+ ###################
42
+ ### Load Data
43
+ ###################
44
+
45
+ # gather ELO data
46
+ latest_elo_file_local = download_latest_data_from_space(
47
+ repo_id="lmsys/chatbot-arena-leaderboard", file_type="pkl"
48
+ )
49
+
50
+ with open(latest_elo_file_local, "rb") as fin:
51
+ elo_results = pickle.load(fin)
52
+
53
+ # TO-DO: need to also include vision
54
+ elo_results = elo_results["text"]
55
+
56
+ arena_dfs = {}
57
+ for k in KEY_TO_CATEGORY_NAME.keys():
58
+ if k not in elo_results:
59
+ continue
60
+ arena_dfs[KEY_TO_CATEGORY_NAME[k]] = elo_results[k]["leaderboard_table_df"]
61
+
62
+ # gather open llm leaderboard data
63
+ latest_leaderboard_file_local = download_latest_data_from_space(
64
+ repo_id="lmsys/chatbot-arena-leaderboard", file_type="csv"
65
+ )
66
+ leaderboard_df = pd.read_csv(latest_leaderboard_file_local)
67
+
68
+ # load release date mapping data
69
+ release_date_mapping = pd.read_json("release_date_mapping.json", orient="records")
70
+
71
+ ###################
72
+ ### Prepare Data
73
+ ###################
74
+
75
+ # update release date mapping with new models
76
+ # check for new models in ELO data
77
+ new_model_keys_to_add = [
78
+ model
79
+ for model in arena_dfs["Overall"].index.to_list()
80
+ if model not in release_date_mapping["key"].to_list()
81
+ ]
82
+ if new_model_keys_to_add:
83
+ release_date_mapping = update_release_date_mapping(
84
+ new_model_keys_to_add, leaderboard_df, release_date_mapping
85
+ )
86
+
87
+ # merge leaderboard data with ELO data
88
+ merged_dfs = {}
89
+ for k, v in arena_dfs.items():
90
+ merged_dfs[k] = (
91
+ pd.merge(arena_dfs[k], leaderboard_df, left_index=True, right_on="key")
92
+ .sort_values("rating", ascending=False)
93
+ .reset_index(drop=True)
94
+ )
95
+
96
+ # add release dates into the merged data
97
+ for k, v in merged_dfs.items():
98
+ merged_dfs[k] = pd.merge(
99
+ merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
100
+ )
101
+
102
+ # format dataframes
103
+ merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
104
+
105
+ # get constants
106
+ min_elo_score, max_elo_score, _ = get_constants(merged_dfs)
107
+ date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
108
+ orgs = merged_dfs["Overall"].Organization.unique().tolist()
109
+
110
+ ###################
111
+ ### Build and Plot Data
112
+ ###################
113
+
114
+
115
+ df = merged_dfs["Overall"]
116
+ top_orgs = df.groupby("Organization")["rating"].max().nlargest(11).index.tolist()
117
+
118
+ df = df.loc[(df["Organization"].isin(top_orgs)) & (df["rating"] > 1000)]
119
+ print(df)
120
+
121
+ df = df.loc[~df["Release Date"].isna()]
122
+
123
+ def get_data_split(dfs, set_name):
124
+ df = dfs[set_name].copy(deep=True)
125
+ return df.reset_index(drop=True)
126
+
127
+
128
+ def clean_df_for_display(df):
129
+ df = df.loc[
130
+ :,
131
+ [
132
+ "Model",
133
+ "rating",
134
+ "MMLU",
135
+ "MT-bench (score)",
136
+ "Release Date",
137
+ "Organization",
138
+ "License",
139
+ "Link",
140
+ ],
141
+ ].rename(columns={"rating": "ELO Score", "MT-bench (score)": "MT-Bench"})
142
+
143
+ df["Release Date"] = df["Release Date"].astype(str)
144
+ df.sort_values("ELO Score", ascending=False, inplace=True)
145
+ df.reset_index(drop=True, inplace=True)
146
+ return df
147
+
148
+ def format_data(df):
149
+ """
150
+ Formats the given DataFrame by performing the following operations:
151
+ - Converts the 'License' column values to 'Proprietary LLM' if they are in PROPRIETARY_LICENSES, otherwise 'Open LLM'.
152
+ - Converts the 'Release Date' column to datetime format.
153
+ - Adds a new 'Month-Year' column by extracting the month and year from the 'Release Date' column.
154
+ - Rounds the 'rating' column to the nearest integer.
155
+ - Resets the index of the DataFrame.
156
+ Args:
157
+ df (pandas.DataFrame): The DataFrame to be formatted.
158
+ Returns:
159
+ pandas.DataFrame: The formatted DataFrame.
160
+ """
161
+
162
+ PROPRIETARY_LICENSES = ["Proprietary", "Proprietory"]
163
+
164
+ df["License"] = df["License"].apply(
165
+ lambda x: "Proprietary LLM" if x in PROPRIETARY_LICENSES else "Open LLM"
166
+ )
167
+ df["Release Date"] = pd.to_datetime(df["Release Date"])
168
+ df["Month-Year"] = df["Release Date"].dt.to_period("M")
169
+ df["rating"] = df["rating"].round()
170
+ return df.reset_index(drop=True)
171
+
172
+
173
+ # Define organization to country mapping and colors
174
+ org_info = {
175
+ "OpenAI": ("#00A67E", "🇺🇸"), # Teal
176
+ "Google": ("#4285F4", "🇺🇸"), # Google Blue
177
+ "xAI": ("black", "🇺🇸"), # Bright Orange
178
+ "Anthropic": ("#cc785c", "🇺🇸"), # Brown (as requested)
179
+ "Meta": ("#0064E0", "🇺🇸"), # Facebook Blue
180
+ "Alibaba": ("#6958cf", "🇨🇳"),
181
+ "DeepSeek": ("#C70039", "🇨🇳"),
182
+ "01 AI": ("#11871e", "🇨🇳"), # Bright Green
183
+ "DeepSeek AI": ("#9900CC", "🇨🇳"), # Purple
184
+ "Mistral": ("#ff7000", "🇫🇷"), # Mistral Orange (as requested)
185
+ "AI21 Labs": ("#1E90FF", "🇮🇱"), # Dodger Blue,
186
+ "Reka AI": ("#FFC300", "🇺🇸"),
187
+ "Zhipu AI": ("#FFC300", "🇨🇳"),
188
+ }
189
+
190
+ def make_figure(df):
191
+ fig = go.Figure()
192
+
193
+ for i, org in enumerate(
194
+ df.groupby("Organization")["rating"]
195
+ .max()
196
+ .sort_values(ascending=False)
197
+ .index.tolist()
198
+ ):
199
+ org_data = df[df["Organization"] == org]
200
+
201
+ if len(org_data) > 0:
202
+ x_values = []
203
+ y_values = []
204
+ current_best = -np.inf
205
+ best_models = []
206
+
207
+ # Group by date and get the best model for each date
208
+ daily_best = org_data.groupby("Release Date").first().reset_index()
209
+
210
+ for _, row in daily_best.iterrows():
211
+ if row["rating"] > current_best:
212
+ if len(x_values) > 0:
213
+ # Create smooth transition
214
+ transition_days = (row["Release Date"] - x_values[-1]).days
215
+ transition_points = pd.date_range(
216
+ x_values[-1],
217
+ row["Release Date"],
218
+ periods=max(100, transition_days),
219
+ )
220
+ x_values.extend(transition_points)
221
+
222
+ transition_y = current_best + (
223
+ row["rating"] - current_best
224
+ ) * sigmoid_transition(
225
+ np.linspace(-6, 6, len(transition_points)), 0, k=1
226
+ )
227
+ y_values.extend(transition_y)
228
+
229
+ x_values.append(row["Release Date"])
230
+ y_values.append(row["rating"])
231
+ current_best = row["rating"]
232
+ best_models.append(row)
233
+
234
+ # Extend the line to the current date
235
+ if x_values[-1] < current_date:
236
+ x_values.append(current_date)
237
+ y_values.append(current_best)
238
+
239
+ # Get org color and flag
240
+ color, flag = org_info.get(org, ("#808080", ""))
241
+
242
+ # Add line plot
243
+ fig.add_trace(
244
+ go.Scatter(
245
+ x=x_values,
246
+ y=y_values,
247
+ mode="lines",
248
+ name=f"{i+1}. {org} {flag}",
249
+ line=dict(color=color, width=2),
250
+ hoverinfo="skip",
251
+ )
252
+ )
253
+
254
+ # Add scatter plot for best model points
255
+ best_models_df = pd.DataFrame(best_models)
256
+ fig.add_trace(
257
+ go.Scatter(
258
+ x=best_models_df["Release Date"],
259
+ y=best_models_df["rating"],
260
+ mode="markers",
261
+ name=org,
262
+ showlegend=False,
263
+ marker=dict(color=color, size=8, symbol="circle"),
264
+ text=best_models_df["Model"],
265
+ hovertemplate="<b>%{text}</b><br>Date: %{x}<br>ELO Score: %{y:.2f}<extra></extra>",
266
+ )
267
+ )
268
+
269
+
270
+ # Update layout
271
+ fig.update_layout(
272
+ xaxis_title="Date",
273
+ title="La course au classement",
274
+ yaxis_title="Score ELO",
275
+ legend_title="Classement en Novembre 2024",
276
+ xaxis_range=[pd.Timestamp("2024-01-01"), current_date], # Extend x-axis for labels
277
+ yaxis_range=[1103, 1350],
278
+ )
279
+ # apply_template(fig)
280
+
281
+ fig.update_xaxes(
282
+ tickformat="%m-%Y",
283
+ )
284
+
285
+ return fig, df
286
+
287
+ def filter_df():
288
+ return df
289
+
290
+
291
+ set_dark_mode = """
292
+ function refresh() {
293
+ const url = new URL(window.location);
294
+
295
+ if (url.searchParams.get('__theme') !== 'dark') {
296
+ url.searchParams.set('__theme', 'dark');
297
+ window.location.href = url.href;
298
+ }
299
+ }
300
+ """
301
+
302
+ with gr.Blocks(
303
+ theme=gr.themes.Soft(
304
+ primary_hue=gr.themes.colors.sky,
305
+ secondary_hue=gr.themes.colors.green,
306
+ # spacing_size=gr.themes.sizes.spacing_sm,
307
+ text_size=gr.themes.sizes.text_sm,
308
+ font=[
309
+ gr.themes.GoogleFont("Open Sans"),
310
+ "ui-sans-serif",
311
+ "system-ui",
312
+ "sans-serif",
313
+ ],
314
+ ),
315
+ js=set_dark_mode,
316
+ ) as demo:
317
+ gr.Markdown(
318
+ """
319
+ <div style="text-align: center; max-width: 650px; margin: auto;">
320
+ <h1 style="font-weight: 900; margin-top: 5px;">🚀 The race for the best LLM 🚀</h1>
321
+ <p style="text-align: left; margin-top: 30px; margin-bottom: 30px; line-height: 20px;">
322
+ This app visualizes the progress of LLMs over time as scored by the <a href="https://leaderboard.lmsys.org/">LMSYS Chatbot Arena</a>.
323
+ The app is adapted from <a href="https://huggingface.co/spaces/andrewrreed/closed-vs-open-arena-elo"> this app</a> by Andew Reed,
324
+ and is intended to stay up-to-date as new models are released and evaluated.
325
+ <div style="text-align: left;">
326
+ <strong>Plot info:</strong>
327
+ <br>
328
+ <ul style="padding-left: 20px;">
329
+ <li> The ELO score (y-axis) is a measure of the relative strength of a model based on its performance against other models in the arena. </li>
330
+ <li> The Release Date (x-axis) corresponds to when the model was first publicly released or when its ELO results were first reported (for ease of automated updates). </li>
331
+ <li> Trend lines are based on Ordinary Least Squares (OLS) regression and adjust based on the filter criteria. </li>
332
+ <ul>
333
+ </div>
334
+ </p>
335
+ </div>
336
+ """
337
+ )
338
+ filtered_df = gr.State()
339
+ with gr.Group():
340
+ with gr.Tab("Plot"):
341
+ plot = gr.Plot(show_label=False)
342
+ with gr.Tab("Raw Data"):
343
+ display_df = gr.DataFrame()
344
+
345
 
346
+ demo.load(
347
+ fn=filter_df,
348
+ inputs=[],
349
+ outputs=filtered_df,
350
+ ).then(
351
+ fn=make_figure,
352
+ inputs=[filtered_df],
353
+ outputs=[plot, display_df],
354
+ )
355
 
 
356
  demo.launch()
release_date_mapping.json ADDED
@@ -0,0 +1,857 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "key": "gpt-4-turbo-2024-04-09",
4
+ "Model": "GPT-4-Turbo-2024-04-09",
5
+ "Release Date": "2024-04-09"
6
+ },
7
+ {
8
+ "key": "gpt-4-1106-preview",
9
+ "Model": "GPT-4-1106-preview",
10
+ "Release Date": "2023-11-06"
11
+ },
12
+ {
13
+ "key": "claude-3-opus-20240229",
14
+ "Model": "Claude 3 Opus",
15
+ "Release Date": "2024-02-29"
16
+ },
17
+ {
18
+ "key": "gemini-1.5-pro-api-0409-preview",
19
+ "Model": "Gemini 1.5 Pro API-0409-Preview",
20
+ "Release Date": "2024-04-09"
21
+ },
22
+ {
23
+ "key": "gpt-4-0125-preview",
24
+ "Model": "GPT-4-0125-preview",
25
+ "Release Date": "2024-01-25"
26
+ },
27
+ {
28
+ "key": "bard-jan-24-gemini-pro",
29
+ "Model": "Bard (Gemini Pro)",
30
+ "Release Date": "2024-02-01"
31
+ },
32
+ {
33
+ "key": "llama-3-70b-instruct",
34
+ "Model": "Llama-3-70b-Instruct",
35
+ "Release Date": "2024-04-18"
36
+ },
37
+ {
38
+ "key": "claude-3-sonnet-20240229",
39
+ "Model": "Claude 3 Sonnet",
40
+ "Release Date": "2024-02-29"
41
+ },
42
+ {
43
+ "key": "command-r-plus",
44
+ "Model": "Command R+",
45
+ "Release Date": "2024-04-04"
46
+ },
47
+ {
48
+ "key": "gpt-4-0314",
49
+ "Model": "GPT-4-0314",
50
+ "Release Date": "2023-03-14"
51
+ },
52
+ {
53
+ "key": "claude-3-haiku-20240307",
54
+ "Model": "Claude 3 Haiku",
55
+ "Release Date": "2024-03-07"
56
+ },
57
+ {
58
+ "key": "gpt-4-0613",
59
+ "Model": "GPT-4-0613",
60
+ "Release Date": "2023-06-13"
61
+ },
62
+ {
63
+ "key": "mistral-large-2402",
64
+ "Model": "Mistral-Large-2402",
65
+ "Release Date": "2024-02-24"
66
+ },
67
+ {
68
+ "key": "qwen1.5-72b-chat",
69
+ "Model": "Qwen1.5-72B-Chat",
70
+ "Release Date": "2024-02-04"
71
+ },
72
+ {
73
+ "key": "reka-flash-21b-20240226-online",
74
+ "Model": "Reka-Flash-21B-online",
75
+ "Release Date": "2024-02-26"
76
+ },
77
+ {
78
+ "key": "claude-1",
79
+ "Model": "Claude-1",
80
+ "Release Date": "2023-03-14"
81
+ },
82
+ {
83
+ "key": "reka-flash-21b-20240226",
84
+ "Model": "Reka-Flash-21B",
85
+ "Release Date": "2024-02-26"
86
+ },
87
+ {
88
+ "key": "command-r",
89
+ "Model": "Command R",
90
+ "Release Date": "2024-03-11"
91
+ },
92
+ {
93
+ "key": "mistral-medium",
94
+ "Model": "Mistral Medium",
95
+ "Release Date": "2023-12-11"
96
+ },
97
+ {
98
+ "key": "mixtral-8x22b-instruct-v0.1",
99
+ "Model": "Mixtral-8x22b-Instruct-v0.1",
100
+ "Release Date": "2024-04-17"
101
+ },
102
+ {
103
+ "key": "llama-3-8b-instruct",
104
+ "Model": "Llama-3-8b-Instruct",
105
+ "Release Date": "2024-04-18"
106
+ },
107
+ {
108
+ "key": "gemini-pro-dev-api",
109
+ "Model": "Gemini Pro (Dev API)",
110
+ "Release Date": "2023-12-13"
111
+ },
112
+ {
113
+ "key": "qwen1.5-32b-chat",
114
+ "Model": "Qwen1.5-32B-Chat",
115
+ "Release Date": "2024-02-04"
116
+ },
117
+ {
118
+ "key": "claude-2.0",
119
+ "Model": "Claude-2.0",
120
+ "Release Date": "2023-07-11"
121
+ },
122
+ {
123
+ "key": "mistral-next",
124
+ "Model": "Mistral-Next",
125
+ "Release Date": "2024-02-17"
126
+ },
127
+ {
128
+ "key": "zephyr-orpo-141b-A35b-v0.1",
129
+ "Model": "Zephyr-ORPO-141b-A35b-v0.1",
130
+ "Release Date": "2024-04-12"
131
+ },
132
+ {
133
+ "key": "gpt-3.5-turbo-0613",
134
+ "Model": "GPT-3.5-Turbo-0613",
135
+ "Release Date": "2023-06-13"
136
+ },
137
+ {
138
+ "key": "claude-2.1",
139
+ "Model": "Claude-2.1",
140
+ "Release Date": "2023-11-21"
141
+ },
142
+ {
143
+ "key": "qwen1.5-14b-chat",
144
+ "Model": "Qwen1.5-14B-Chat",
145
+ "Release Date": "2024-02-04"
146
+ },
147
+ {
148
+ "key": "starling-lm-7b-beta",
149
+ "Model": "Starling-LM-7B-beta",
150
+ "Release Date": "2024-03-20"
151
+ },
152
+ {
153
+ "key": "gemini-pro",
154
+ "Model": "Gemini Pro",
155
+ "Release Date": "2023-12-13"
156
+ },
157
+ {
158
+ "key": "mixtral-8x7b-instruct-v0.1",
159
+ "Model": "Mixtral-8x7b-Instruct-v0.1",
160
+ "Release Date": "2023-12-11"
161
+ },
162
+ {
163
+ "key": "claude-instant-1",
164
+ "Model": "Claude-Instant-1",
165
+ "Release Date": "2023-03-14"
166
+ },
167
+ {
168
+ "key": "yi-34b-chat",
169
+ "Model": "Yi-34B-Chat",
170
+ "Release Date": "2024-01-23"
171
+ },
172
+ {
173
+ "key": "gpt-3.5-turbo-0314",
174
+ "Model": "GPT-3.5-Turbo-0314",
175
+ "Release Date": "2023-03-14"
176
+ },
177
+ {
178
+ "key": "wizardlm-70b",
179
+ "Model": "WizardLM-70B-v1.0",
180
+ "Release Date": "2023-08-09"
181
+ },
182
+ {
183
+ "key": "gpt-3.5-turbo-0125",
184
+ "Model": "GPT-3.5-Turbo-0125",
185
+ "Release Date": "2024-01-25"
186
+ },
187
+ {
188
+ "key": "tulu-2-dpo-70b",
189
+ "Model": "Tulu-2-DPO-70B",
190
+ "Release Date": "2023-11-12"
191
+ },
192
+ {
193
+ "key": "dbrx-instruct-preview",
194
+ "Model": "DBRX-Instruct-Preview",
195
+ "Release Date": "2024-03-27"
196
+ },
197
+ {
198
+ "key": "openchat-3.5-0106",
199
+ "Model": "OpenChat-3.5-0106",
200
+ "Release Date": "2024-01-06"
201
+ },
202
+ {
203
+ "key": "vicuna-33b",
204
+ "Model": "Vicuna-33B",
205
+ "Release Date": "2023-06-21"
206
+ },
207
+ {
208
+ "key": "starling-lm-7b-alpha",
209
+ "Model": "Starling-LM-7B-alpha",
210
+ "Release Date": "2023-11-25"
211
+ },
212
+ {
213
+ "key": "llama-2-70b-chat",
214
+ "Model": "Llama-2-70b-chat",
215
+ "Release Date": "2023-07-18"
216
+ },
217
+ {
218
+ "key": "nous-hermes-2-mixtral-8x7b-dpo",
219
+ "Model": "Nous-Hermes-2-Mixtral-8x7B-DPO",
220
+ "Release Date": "2024-01-13"
221
+ },
222
+ {
223
+ "key": "gemma-1.1-7b-it",
224
+ "Model": "Gemma-1.1-7B-it",
225
+ "Release Date": "2024-04-09"
226
+ },
227
+ {
228
+ "key": "llama2-70b-steerlm-chat",
229
+ "Model": "NV-Llama2-70B-SteerLM-Chat",
230
+ "Release Date": "2023-11-24"
231
+ },
232
+ {
233
+ "key": "deepseek-llm-67b-chat",
234
+ "Model": "DeepSeek-LLM-67B-Chat",
235
+ "Release Date": "2023-11-29"
236
+ },
237
+ {
238
+ "key": "openhermes-2.5-mistral-7b",
239
+ "Model": "OpenHermes-2.5-Mistral-7b",
240
+ "Release Date": "2023-10-29"
241
+ },
242
+ {
243
+ "key": "openchat-3.5",
244
+ "Model": "OpenChat-3.5",
245
+ "Release Date": "2023-11-16"
246
+ },
247
+ {
248
+ "key": "pplx-70b-online",
249
+ "Model": "pplx-70b-online",
250
+ "Release Date": "2023-11-29"
251
+ },
252
+ {
253
+ "key": "mistral-7b-instruct-v0.2",
254
+ "Model": "Mistral-7B-Instruct-v0.2",
255
+ "Release Date": "2023-12-11"
256
+ },
257
+ {
258
+ "key": "qwen1.5-7b-chat",
259
+ "Model": "Qwen1.5-7B-Chat",
260
+ "Release Date": "2024-02-04"
261
+ },
262
+ {
263
+ "key": "gpt-3.5-turbo-1106",
264
+ "Model": "GPT-3.5-Turbo-1106",
265
+ "Release Date": "2023-11-06"
266
+ },
267
+ {
268
+ "key": "dolphin-2.2.1-mistral-7b",
269
+ "Model": "Dolphin-2.2.1-Mistral-7B",
270
+ "Release Date": "2023-10-30"
271
+ },
272
+ {
273
+ "key": "solar-10.7b-instruct-v1.0",
274
+ "Model": "SOLAR-10.7B-Instruct-v1.0",
275
+ "Release Date": "2023-12-13"
276
+ },
277
+ {
278
+ "key": "phi-3-mini-128k-instruct",
279
+ "Model": "Phi-3-Mini-128k-Instruct",
280
+ "Release Date": "2024-04-23"
281
+ },
282
+ {
283
+ "key": "wizardlm-13b",
284
+ "Model": "WizardLM-13b-v1.2",
285
+ "Release Date": "2023-07-25"
286
+ },
287
+ {
288
+ "key": "llama-2-13b-chat",
289
+ "Model": "Llama-2-13b-chat",
290
+ "Release Date": "2023-07-18"
291
+ },
292
+ {
293
+ "key": "zephyr-7b-beta",
294
+ "Model": "Zephyr-7b-beta",
295
+ "Release Date": "2023-10-26"
296
+ },
297
+ {
298
+ "key": "codellama-70b-instruct",
299
+ "Model": "CodeLlama-70B-instruct",
300
+ "Release Date": "2024-01-29"
301
+ },
302
+ {
303
+ "key": "mpt-30b-chat",
304
+ "Model": "MPT-30B-chat",
305
+ "Release Date": "2023-06-09"
306
+ },
307
+ {
308
+ "key": "vicuna-13b",
309
+ "Model": "Vicuna-13B",
310
+ "Release Date": "2023-07-23"
311
+ },
312
+ {
313
+ "key": "codellama-34b-instruct",
314
+ "Model": "CodeLlama-34B-instruct",
315
+ "Release Date": "2023-08-24"
316
+ },
317
+ {
318
+ "key": "gemma-7b-it",
319
+ "Model": "Gemma-7B-it",
320
+ "Release Date": "2024-02-21"
321
+ },
322
+ {
323
+ "key": "pplx-7b-online",
324
+ "Model": "pplx-7b-online",
325
+ "Release Date": "2023-11-29"
326
+ },
327
+ {
328
+ "key": "zephyr-7b-alpha",
329
+ "Model": "Zephyr-7b-alpha",
330
+ "Release Date": "2023-10-09"
331
+ },
332
+ {
333
+ "key": "llama-2-7b-chat",
334
+ "Model": "Llama-2-7b-chat",
335
+ "Release Date": "2023-07-18"
336
+ },
337
+ {
338
+ "key": "qwen-14b-chat",
339
+ "Model": "Qwen-14B-Chat",
340
+ "Release Date": "2023-09-24"
341
+ },
342
+ {
343
+ "key": "falcon-180b-chat",
344
+ "Model": "falcon-180b-chat",
345
+ "Release Date": "2023-09-05"
346
+ },
347
+ {
348
+ "key": "guanaco-33b",
349
+ "Model": "Guanaco-33B",
350
+ "Release Date": "2023-05-22"
351
+ },
352
+ {
353
+ "key": "stripedhyena-nous-7b",
354
+ "Model": "StripedHyena-Nous-7B",
355
+ "Release Date": "2023-12-07"
356
+ },
357
+ {
358
+ "key": "olmo-7b-instruct",
359
+ "Model": "OLMo-7B-instruct",
360
+ "Release Date": "2024-02-23"
361
+ },
362
+ {
363
+ "key": "gemma-1.1-2b-it",
364
+ "Model": "Gemma-1.1-2B-it",
365
+ "Release Date": "2024-04-09"
366
+ },
367
+ {
368
+ "key": "mistral-7b-instruct",
369
+ "Model": "Mistral-7B-Instruct-v0.1",
370
+ "Release Date": "2023-09-27"
371
+ },
372
+ {
373
+ "key": "palm-2",
374
+ "Model": "PaLM-Chat-Bison-001",
375
+ "Release Date": "2023-07-10"
376
+ },
377
+ {
378
+ "key": "vicuna-7b",
379
+ "Model": "Vicuna-7B",
380
+ "Release Date": "2023-07-29"
381
+ },
382
+ {
383
+ "key": "qwen1.5-4b-chat",
384
+ "Model": "Qwen1.5-4B-Chat",
385
+ "Release Date": "2024-02-04"
386
+ },
387
+ {
388
+ "key": "gemma-2b-it",
389
+ "Model": "Gemma-2B-it",
390
+ "Release Date": "2024-02-21"
391
+ },
392
+ {
393
+ "key": "koala-13b",
394
+ "Model": "Koala-13B",
395
+ "Release Date": "2023-04-03"
396
+ },
397
+ {
398
+ "key": "chatglm3-6b",
399
+ "Model": "ChatGLM3-6B",
400
+ "Release Date": "2023-10-25"
401
+ },
402
+ {
403
+ "key": "gpt4all-13b-snoozy",
404
+ "Model": "GPT4All-13B-Snoozy",
405
+ "Release Date": "2023-04-24"
406
+ },
407
+ {
408
+ "key": "chatglm2-6b",
409
+ "Model": "ChatGLM2-6B",
410
+ "Release Date": "2023-06-25"
411
+ },
412
+ {
413
+ "key": "mpt-7b-chat",
414
+ "Model": "MPT-7B-Chat",
415
+ "Release Date": "2023-05-04"
416
+ },
417
+ {
418
+ "key": "RWKV-4-Raven-14B",
419
+ "Model": "RWKV-4-Raven-14B",
420
+ "Release Date": "2023-05-22"
421
+ },
422
+ {
423
+ "key": "alpaca-13b",
424
+ "Model": "Alpaca-13B",
425
+ "Release Date": "2023-03-13"
426
+ },
427
+ {
428
+ "key": "oasst-pythia-12b",
429
+ "Model": "OpenAssistant-Pythia-12B",
430
+ "Release Date": "2023-04-03"
431
+ },
432
+ {
433
+ "key": "chatglm-6b",
434
+ "Model": "ChatGLM-6B",
435
+ "Release Date": "2023-03-13"
436
+ },
437
+ {
438
+ "key": "fastchat-t5-3b",
439
+ "Model": "FastChat-T5-3B",
440
+ "Release Date": "2023-04-27"
441
+ },
442
+ {
443
+ "key": "stablelm-tuned-alpha-7b",
444
+ "Model": "StableLM-Tuned-Alpha-7B",
445
+ "Release Date": "2023-04-19"
446
+ },
447
+ {
448
+ "key": "dolly-v2-12b",
449
+ "Model": "Dolly-V2-12B",
450
+ "Release Date": "2023-04-12"
451
+ },
452
+ {
453
+ "key": "llama-13b",
454
+ "Model": "LLaMA-13B",
455
+ "Release Date": "2023-02-27"
456
+ },
457
+ {
458
+ "key": "snowflake-arctic-instruct",
459
+ "Model": "Snowflake Arctic Instruct",
460
+ "Release Date": "2024-04-24"
461
+ },
462
+ {
463
+ "key": "gpt-4o-2024-05-13",
464
+ "Model": "GPT-4o-2024-05-13",
465
+ "Release Date": "2024-05-16"
466
+ },
467
+ {
468
+ "key": "qwen-max-0428",
469
+ "Model": "Qwen-Max-0428",
470
+ "Release Date": "2024-05-16"
471
+ },
472
+ {
473
+ "key": "qwen1.5-110b-chat",
474
+ "Model": "Qwen1.5-110B-Chat",
475
+ "Release Date": "2024-05-16"
476
+ },
477
+ {
478
+ "key": "reka-core-20240501",
479
+ "Model": "Reka-Core-20240501",
480
+ "Release Date": "2024-05-16"
481
+ },
482
+ {
483
+ "key": "glm-4-0116",
484
+ "Model": "GLM-4-0116",
485
+ "Release Date": "2024-05-23"
486
+ },
487
+ {
488
+ "key": "phi-3-mini-4k-instruct",
489
+ "Model": "Phi-3-Mini-4k-Instruct",
490
+ "Release Date": "2024-05-23"
491
+ },
492
+ {
493
+ "key": "yi-large-preview",
494
+ "Model": "Yi-Large-preview",
495
+ "Release Date": "2024-05-23"
496
+ },
497
+ {
498
+ "key": "claude-3-5-sonnet-20240620",
499
+ "Model": "Claude 3.5 Sonnet",
500
+ "Release Date": "2024-06-20"
501
+ },
502
+ {
503
+ "key": "deepseek-coder-v2",
504
+ "Model": "DeepSeek-Coder-V2-Instruct",
505
+ "Release Date": "2024-06-17"
506
+ },
507
+ {
508
+ "key": "gemini-1.5-flash-api-0514",
509
+ "Model": "Gemini-1.5-Flash-API-0514",
510
+ "Release Date": "2024-05-24"
511
+ },
512
+ {
513
+ "key": "gemini-1.5-pro-api-0514",
514
+ "Model": "Gemini-1.5-Pro-API-0514",
515
+ "Release Date": "2024-05-24"
516
+ },
517
+ {
518
+ "key": "gemini-advanced-0514",
519
+ "Model": "Gemini-Advanced-0514",
520
+ "Release Date": "2024-05-24"
521
+ },
522
+ {
523
+ "key": "gemma-2-27b-it",
524
+ "Model": "Gemma-2-27B-it",
525
+ "Release Date": "2024-07-01"
526
+ },
527
+ {
528
+ "key": "gemma-2-9b-it",
529
+ "Model": "Gemma-2-9B-it",
530
+ "Release Date": "2024-06-27"
531
+ },
532
+ {
533
+ "key": "glm-4-0520",
534
+ "Model": "GLM-4-0520",
535
+ "Release Date": "2024-05-20"
536
+ },
537
+ {
538
+ "key": "nemotron-4-340b-instruct",
539
+ "Model": "Nemotron-4-340B-Instruct",
540
+ "Release Date": "2024-06-14"
541
+ },
542
+ {
543
+ "key": "phi-3-medium-4k-instruct",
544
+ "Model": "Phi-3-Medium-4k-Instruct",
545
+ "Release Date": "2024-05-21"
546
+ },
547
+ {
548
+ "key": "phi-3-small-8k-instruct",
549
+ "Model": "Phi-3-Small-8k-Instruct",
550
+ "Release Date": "2024-05-21"
551
+ },
552
+ {
553
+ "key": "qwen2-72b-instruct",
554
+ "Model": "Qwen2-72B-Instruct",
555
+ "Release Date": "2024-06-06"
556
+ },
557
+ {
558
+ "key": "reka-flash-preview-20240611",
559
+ "Model": "Reka-Flash-Preview-20240611",
560
+ "Release Date": "2024-06-11"
561
+ },
562
+ {
563
+ "key": "yi-1.5-34b-chat",
564
+ "Model": "Yi-1.5-34B-Chat",
565
+ "Release Date": "2024-05-13"
566
+ },
567
+ {
568
+ "key": "yi-large",
569
+ "Model": "Yi-Large",
570
+ "Release Date": "2024-05-13"
571
+ },
572
+ {
573
+ "key": "phi-3-mini-4k-instruct-june-2024",
574
+ "Model": "Phi-3-Mini-4k-Instruct-June-24",
575
+ "Release Date": "2024-06-24"
576
+ },
577
+ {
578
+ "key": "athene-70b-0725",
579
+ "Model": "athene-70b-0725",
580
+ "Release Date": "2024-07-25"
581
+ },
582
+ {
583
+ "key": "athene-70b-0725",
584
+ "Model": "athene-70b-0725",
585
+ "Release Date": "2024-07-25"
586
+ },
587
+ {
588
+ "key": "deepseek-coder-v2-0724",
589
+ "Model": "Deepseek-Coder-v2-0724",
590
+ "Release Date": "2024-07-24"
591
+ },
592
+ {
593
+ "key": "deepseek-v2-api-0628",
594
+ "Model": "Deepseek-v2-API-0628",
595
+ "Release Date": "2024-06-28"
596
+ },
597
+ {
598
+ "key": "gemini-1.5-pro-exp-0801",
599
+ "Model": "Gemini-1.5-Pro-Exp-0801",
600
+ "Release Date": "2024-08-01"
601
+ },
602
+ {
603
+ "key": "gemma-2-2b-it",
604
+ "Model": "Gemma-2-2b-it",
605
+ "Release Date": "2024-07-31"
606
+ },
607
+ {
608
+ "key": "gpt-4o-mini-2024-07-18",
609
+ "Model": "GPT-4o-mini-2024-07-18",
610
+ "Release Date": "2024-07-18"
611
+ },
612
+ {
613
+ "key": "llama-3.1-405b-instruct",
614
+ "Model": "Meta-Llama-3.1-405b-Instruct",
615
+ "Release Date": "2024-07-23"
616
+ },
617
+ {
618
+ "key": "llama-3.1-70b-instruct",
619
+ "Model": "Meta-Llama-3.1-70b-Instruct",
620
+ "Release Date": "2024-07-23"
621
+ },
622
+ {
623
+ "key": "llama-3.1-8b-instruct",
624
+ "Model": "Meta-Llama-3.1-8b-Instruct",
625
+ "Release Date": "2024-07-23"
626
+ },
627
+ {
628
+ "key": "mistral-large-2407",
629
+ "Model": "Mistral-Large-2407",
630
+ "Release Date": "2024-07-24"
631
+ },
632
+ {
633
+ "key": "reka-core-20240722",
634
+ "Model": "Reka-Core-20240722",
635
+ "Release Date": "2024-07-22"
636
+ },
637
+ {
638
+ "key": "reka-flash-20240722",
639
+ "Model": "Reka-Flash-20240722",
640
+ "Release Date": "2024-07-22"
641
+ },
642
+ {
643
+ "key": "chatgpt-4o-latest-20240808",
644
+ "Model": "ChatGPT-4o-latest (2024-08-08)",
645
+ "Release Date": "2024-08-08"
646
+ },
647
+ {
648
+ "key": "chatgpt-4o-latest-20240903",
649
+ "Model": "ChatGPT-4o-latest (2024-09-03)",
650
+ "Release Date": "2024-09-03"
651
+ },
652
+ {
653
+ "key": "command-r-08-2024",
654
+ "Model": "Command R (08-2024)",
655
+ "Release Date": "2024-08-08"
656
+ },
657
+ {
658
+ "key": "command-r-plus-08-2024",
659
+ "Model": "Command R+ (08-2024)",
660
+ "Release Date": "2024-08-08"
661
+ },
662
+ {
663
+ "key": "deepseek-v2.5",
664
+ "Model": "Deepseek-v2.5",
665
+ "Release Date": "2024-09-05"
666
+ },
667
+ {
668
+ "key": "gemini-1.5-flash-8b-exp-0827",
669
+ "Model": "Gemini-1.5-Flash-8b-Exp-0827",
670
+ "Release Date": "2024-08-27"
671
+ },
672
+ {
673
+ "key": "gemini-1.5-flash-exp-0827",
674
+ "Model": "Gemini-1.5-Flash-Exp-0827",
675
+ "Release Date": "2024-08-27"
676
+ },
677
+ {
678
+ "key": "gemini-1.5-pro-exp-0827",
679
+ "Model": "Gemini-1.5-Pro-Exp-0827",
680
+ "Release Date": "2024-08-27"
681
+ },
682
+ {
683
+ "key": "gemma-2-9b-it-simpo",
684
+ "Model": "Gemma-2-9b-it-SimPO",
685
+ "Release Date": "2024-09-07"
686
+ },
687
+ {
688
+ "key": "gpt-4o-2024-08-06",
689
+ "Model": "GPT-4o-2024-08-06",
690
+ "Release Date": "2024-08-06"
691
+ },
692
+ {
693
+ "key": "grok-2-2024-08-13",
694
+ "Model": "Grok-2-08-13",
695
+ "Release Date": "2024-08-13"
696
+ },
697
+ {
698
+ "key": "grok-2-mini-2024-08-13",
699
+ "Model": "Grok-2-Mini-08-13",
700
+ "Release Date": "2024-08-13"
701
+ },
702
+ {
703
+ "key": "internlm2_5-20b-chat",
704
+ "Model": "InternLM2.5-20b-chat",
705
+ "Release Date": "2024-07-30"
706
+ },
707
+ {
708
+ "key": "jamba-1.5-large",
709
+ "Model": "Jamba-1.5-Large",
710
+ "Release Date": "2024-08-22"
711
+ },
712
+ {
713
+ "key": "jamba-1.5-mini",
714
+ "Model": "Jamba-1.5-Mini",
715
+ "Release Date": "2024-08-22"
716
+ },
717
+ {
718
+ "key": "llama-3.1-405b-instruct-bf16",
719
+ "Model": "Meta-Llama-3.1-405b-Instruct-bf16",
720
+ "Release Date": "2024-07-23"
721
+ },
722
+ {
723
+ "key": "llama-3.1-405b-instruct-fp8",
724
+ "Model": "Meta-Llama-3.1-405b-Instruct-fp8",
725
+ "Release Date": "2024-07-23"
726
+ },
727
+ {
728
+ "key": "llama-3.2-1b-instruct",
729
+ "Model": "Meta-Llama-3.2-1b-Instruct",
730
+ "Release Date": "2024-09-25"
731
+ },
732
+ {
733
+ "key": "llama-3.2-3b-instruct",
734
+ "Model": "Meta-Llama-3.2-3b-Instruct",
735
+ "Release Date": "2024-09-25"
736
+ },
737
+ {
738
+ "key": "o1-mini",
739
+ "Model": "o1-mini",
740
+ "Release Date": "2024-09-12"
741
+ },
742
+ {
743
+ "key": "o1-preview",
744
+ "Model": "o1-preview",
745
+ "Release Date": "2024-09-12"
746
+ },
747
+ {
748
+ "key": "qwen-plus-0828",
749
+ "Model": "Qwen-Plus-0828",
750
+ "Release Date": "2024-08-28"
751
+ },
752
+ {
753
+ "key": "qwen2.5-72b-instruct",
754
+ "Model": "Qwen2.5-72b-Instruct",
755
+ "Release Date": "2024-09-19"
756
+ },
757
+ {
758
+ "key": "chatgpt-4o-latest-20241120",
759
+ "Model": "ChatGPT-4o-latest (2024-11-20)",
760
+ "Release Date": "2024-11-20"
761
+ },
762
+ {
763
+ "key": "claude-3-5-sonnet-20241022",
764
+ "Model": "Claude 3.5 Sonnet (20241022)",
765
+ "Release Date": "2024-10-22"
766
+ },
767
+ {
768
+ "key": "gemini-1.5-flash-001",
769
+ "Model": "Gemini-1.5-Flash-001",
770
+ "Release Date": "2024-05-24"
771
+ },
772
+ {
773
+ "key": "gemini-1.5-flash-002",
774
+ "Model": "Gemini-1.5-Flash-002",
775
+ "Release Date": "2024-09-24"
776
+ },
777
+ {
778
+ "key": "gemini-1.5-flash-8b-001",
779
+ "Model": "Gemini-1.5-Flash-8B-001",
780
+ "Release Date": "2024-10-03"
781
+ },
782
+ {
783
+ "key": "gemini-1.5-pro-001",
784
+ "Model": "Gemini-1.5-Pro-001",
785
+ "Release Date": "2024-05-24"
786
+ },
787
+ {
788
+ "key": "gemini-1.5-pro-002",
789
+ "Model": "Gemini-1.5-Pro-002",
790
+ "Release Date": "2024-09-24"
791
+ },
792
+ {
793
+ "key": "gemini-exp-1114",
794
+ "Model": "Gemini-Exp-1114",
795
+ "Release Date": "2024-11-14"
796
+ },
797
+ {
798
+ "key": "gemini-exp-1121",
799
+ "Model": "Gemini-Exp-1121",
800
+ "Release Date": "2024-11-21"
801
+ },
802
+ {
803
+ "key": "glm-4-plus",
804
+ "Model": "GLM-4-Plus",
805
+ "Release Date": "2024-08-30"
806
+ },
807
+ {
808
+ "key": "granite-3.0-2b-instruct",
809
+ "Model": "Granite-3.0-2B-Instruct",
810
+ "Release Date": "2024-10-21"
811
+ },
812
+ {
813
+ "key": "granite-3.0-8b-instruct",
814
+ "Model": "Granite-3.0-8B-Instruct",
815
+ "Release Date": "2024-10-21"
816
+ },
817
+ {
818
+ "key": "hunyuan-standard-256k",
819
+ "Model": "Hunyuan-Standard-256K",
820
+ "Release Date": "2024-05-28"
821
+ },
822
+ {
823
+ "key": "llama-3.1-nemotron-51b-instruct",
824
+ "Model": "Llama-3.1-Nemotron-51B-Instruct",
825
+ "Release Date": "2024-09-23"
826
+ },
827
+ {
828
+ "key": "llama-3.1-nemotron-70b-instruct",
829
+ "Model": "Llama-3.1-Nemotron-70B-Instruct",
830
+ "Release Date": "2024-10-11"
831
+ },
832
+ {
833
+ "key": "ministral-8b-2410",
834
+ "Model": "Ministral-8B-2410",
835
+ "Release Date": "2024-10-24"
836
+ },
837
+ {
838
+ "key": "qwen-max-0919",
839
+ "Model": "Qwen-Max-0919",
840
+ "Release Date": "2024-09-19"
841
+ },
842
+ {
843
+ "key": "qwen2.5-coder-32b-instruct",
844
+ "Model": "Qwen2.5-Coder-32B-Instruct",
845
+ "Release Date": "2024-11-05"
846
+ },
847
+ {
848
+ "key": "yi-lightning",
849
+ "Model": "Yi-Lightning",
850
+ "Release Date": "2024-10-16"
851
+ },
852
+ {
853
+ "key": "yi-lightning-lite",
854
+ "Model": "Yi-Lightning-lite",
855
+ "Release Date": "2024-10-16"
856
+ }
857
+ ]
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ huggingface_hub
2
+ pandas
3
+ numpy
4
+ plotly
5
+ gradio
6
+ statsmodels
7
+ apscheduler
utils.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from datetime import datetime
3
+
4
+ from typing import Literal, List
5
+
6
+ import pandas as pd
7
+ import plotly.express as px
8
+ from huggingface_hub import HfFileSystem, hf_hub_download
9
+
10
+ # from: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/monitor/monitor.py#L389
11
+ KEY_TO_CATEGORY_NAME = {
12
+ "full": "Overall",
13
+ "dedup": "De-duplicate Top Redundant Queries (soon to be default)",
14
+ "math": "Math",
15
+ "if": "Instruction Following",
16
+ "multiturn": "Multi-Turn",
17
+ "coding": "Coding",
18
+ "hard_6": "Hard Prompts (Overall)",
19
+ "hard_english_6": "Hard Prompts (English)",
20
+ "long_user": "Longer Query",
21
+ "english": "English",
22
+ "chinese": "Chinese",
23
+ "french": "French",
24
+ "german": "German",
25
+ "spanish": "Spanish",
26
+ "russian": "Russian",
27
+ "japanese": "Japanese",
28
+ "korean": "Korean",
29
+ "no_tie": "Exclude Ties",
30
+ "no_short": "Exclude Short Query (< 5 tokens)",
31
+ "no_refusal": "Exclude Refusal",
32
+ "overall_limit_5_user_vote": "overall_limit_5_user_vote",
33
+ "full_old": "Overall (Deprecated)",
34
+ }
35
+
36
+ CAT_NAME_TO_EXPLANATION = {
37
+ "Overall": "Overall Questions",
38
+ "De-duplicate Top Redundant Queries (soon to be default)": "De-duplicate top redundant queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).",
39
+ "Math": "Math",
40
+ "Instruction Following": "Instruction Following",
41
+ "Multi-Turn": "Multi-Turn Conversation (>= 2 turns)",
42
+ "Coding": "Coding: whether conversation contains code snippets",
43
+ "Hard Prompts (Overall)": "Hard Prompts (Overall): details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)",
44
+ "Hard Prompts (English)": "Hard Prompts (English), note: the delta is to English Category. details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)",
45
+ "Longer Query": "Longer Query (>= 500 tokens)",
46
+ "English": "English Prompts",
47
+ "Chinese": "Chinese Prompts",
48
+ "French": "French Prompts",
49
+ "German": "German Prompts",
50
+ "Spanish": "Spanish Prompts",
51
+ "Russian": "Russian Prompts",
52
+ "Japanese": "Japanese Prompts",
53
+ "Korean": "Korean Prompts",
54
+ "Exclude Ties": "Exclude Ties and Bothbad",
55
+ "Exclude Short Query (< 5 tokens)": "Exclude Short User Query (< 5 tokens)",
56
+ "Exclude Refusal": 'Exclude model responses with refusal (e.g., "I cannot answer")',
57
+ "overall_limit_5_user_vote": "overall_limit_5_user_vote",
58
+ "Overall (Deprecated)": "Overall without De-duplicating Top Redundant Queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).",
59
+ }
60
+
61
+ PROPRIETARY_LICENSES = ["Proprietary", "Proprietory"]
62
+
63
+
64
+ def download_latest_data_from_space(
65
+ repo_id: str, file_type: Literal["pkl", "csv"]
66
+ ) -> str:
67
+ """
68
+ Downloads the latest data file of the specified file type from the given repository space.
69
+
70
+ Args:
71
+ repo_id (str): The ID of the repository space.
72
+ file_type (Literal["pkl", "csv"]): The type of the data file to download. Must be either "pkl" or "csv".
73
+
74
+ Returns:
75
+ str: The local file path of the downloaded data file.
76
+ """
77
+
78
+ def extract_date(filename):
79
+ return filename.split("/")[-1].split(".")[0].split("_")[-1]
80
+
81
+ fs = HfFileSystem()
82
+ data_file_path = f"spaces/{repo_id}/*.{file_type}"
83
+ files = fs.glob(data_file_path)
84
+ files = [
85
+ file for file in files if "leaderboard_table" in file or "elo_results" in file
86
+ ]
87
+ latest_file = sorted(files, key=extract_date, reverse=True)[0]
88
+
89
+ latest_filepath_local = hf_hub_download(
90
+ repo_id=repo_id,
91
+ filename=latest_file.split("/")[-1],
92
+ repo_type="space",
93
+ )
94
+ print(latest_file.split("/")[-1])
95
+ return latest_filepath_local
96
+
97
+
98
+ def get_constants(dfs):
99
+ """
100
+ Calculate and return the minimum and maximum Elo scores, as well as the maximum number of models per month.
101
+
102
+ Parameters:
103
+ - dfs (dict): A dictionary containing DataFrames for different categories.
104
+
105
+ Returns:
106
+ - min_elo_score (float): The minimum Elo score across all DataFrames.
107
+ - max_elo_score (float): The maximum Elo score across all DataFrames.
108
+ - upper_models_per_month (int): The maximum number of models per month per license across all DataFrames.
109
+ """
110
+ filter_ranges = {}
111
+ for k, df in dfs.items():
112
+ filter_ranges[k] = {
113
+ "min_elo_score": df["rating"].min().round(),
114
+ "max_elo_score": df["rating"].max().round(),
115
+ "upper_models_per_month": int(
116
+ df.groupby(["Month-Year", "License"])["rating"]
117
+ .apply(lambda x: x.count())
118
+ .max()
119
+ ),
120
+ }
121
+
122
+ min_elo_score = float("inf")
123
+ max_elo_score = float("-inf")
124
+ upper_models_per_month = 0
125
+
126
+ for _, value in filter_ranges.items():
127
+ min_elo_score = min(min_elo_score, value["min_elo_score"])
128
+ max_elo_score = max(max_elo_score, value["max_elo_score"])
129
+ upper_models_per_month = max(
130
+ upper_models_per_month, value["upper_models_per_month"]
131
+ )
132
+ return min_elo_score, max_elo_score, upper_models_per_month
133
+
134
+
135
+ def update_release_date_mapping(
136
+ new_model_keys_to_add: List[str],
137
+ leaderboard_df: pd.DataFrame,
138
+ release_date_mapping: pd.DataFrame,
139
+ ) -> pd.DataFrame:
140
+ """
141
+ Update the release date mapping with new model keys.
142
+
143
+ Args:
144
+ new_model_keys_to_add (List[str]): A list of new model keys to add to the release date mapping.
145
+ leaderboard_df (pd.DataFrame): The leaderboard DataFrame containing the model information.
146
+ release_date_mapping (pd.DataFrame): The current release date mapping DataFrame.
147
+
148
+ Returns:
149
+ pd.DataFrame: The updated release date mapping DataFrame.
150
+ """
151
+ # if any, add those to the release date mapping
152
+ if new_model_keys_to_add:
153
+ for key in new_model_keys_to_add:
154
+ new_entry = {
155
+ "key": key,
156
+ "Model": leaderboard_df[leaderboard_df["key"] == key]["Model"].values[
157
+ 0
158
+ ],
159
+ "Release Date": datetime.today().strftime("%Y-%m-%d"),
160
+ }
161
+
162
+ with open("release_date_mapping.json", "r") as file:
163
+ data = json.load(file)
164
+
165
+ data.append(new_entry)
166
+
167
+ with open("release_date_mapping.json", "w") as file:
168
+ json.dump(data, file, indent=4)
169
+
170
+ print(f"Added {key} to release_date_mapping.json")
171
+
172
+ # reload the release date mapping
173
+ release_date_mapping = pd.read_json(
174
+ "release_date_mapping.json", orient="records"
175
+ )
176
+ return release_date_mapping
177
+
178
+
179
+ def format_data(df):
180
+ """
181
+ Formats the given DataFrame by performing the following operations:
182
+ - Converts the 'License' column values to 'Proprietary LLM' if they are in PROPRIETARY_LICENSES, otherwise 'Open LLM'.
183
+ - Converts the 'Release Date' column to datetime format.
184
+ - Adds a new 'Month-Year' column by extracting the month and year from the 'Release Date' column.
185
+ - Rounds the 'rating' column to the nearest integer.
186
+ - Resets the index of the DataFrame.
187
+
188
+ Args:
189
+ df (pandas.DataFrame): The DataFrame to be formatted.
190
+
191
+ Returns:
192
+ pandas.DataFrame: The formatted DataFrame.
193
+ """
194
+ df["License"] = df["License"].apply(
195
+ lambda x: "Proprietary LLM" if x in PROPRIETARY_LICENSES else "Open LLM"
196
+ )
197
+ df["Release Date"] = pd.to_datetime(df["Release Date"])
198
+ df["Month-Year"] = df["Release Date"].dt.to_period("M")
199
+ df["rating"] = df["rating"].round()
200
+ return df.reset_index(drop=True)
201
+
202
+
203
+ def get_trendlines(fig):
204
+
205
+ trend_lines = px.get_trendline_results(fig)
206
+
207
+ return [
208
+ trend_lines.iloc[i]["px_fit_results"].params.tolist()
209
+ for i in range(len(trend_lines))
210
+ ]
211
+
212
+
213
+ def find_crossover_point(b1, m1, b2, m2):
214
+ """
215
+ Determine the X value at which two trendlines will cross over.
216
+
217
+ Parameters:
218
+ m1 (float): Slope of the first trendline.
219
+ b1 (float): Intercept of the first trendline.
220
+ m2 (float): Slope of the second trendline.
221
+ b2 (float): Intercept of the second trendline.
222
+
223
+ Returns:
224
+ float: The X value where the two trendlines cross.
225
+ """
226
+ if m1 == m2:
227
+ raise ValueError("The trendlines are parallel and do not cross.")
228
+
229
+ x_crossover = (b2 - b1) / (m1 - m2)
230
+ return x_crossover
231
+
232
+ # Function to create sigmoid transition
233
+ def sigmoid_transition(x, x0, k=0.1):
234
+ return expit(k * (x - x0))