import spaces import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch model_repo_id = "black-forest-labs/FLUX.1-schnell" torch_dtype = torch.float16 @spaces.GPU def infer( prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) try: generator = torch.Generator(device="cuda").manual_seed(seed) image = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed except Exception as e: raise gr.Error(f"Generation failed: {str(e)}") examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] try: pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to("cuda") except Exception as e: print(f"Error loading model: {e}") raise MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Text-to-Image Generation") with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Generate", scale=0, variant="primary") result = gr.Image(label="Generated Image", show_label=True) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=4, step=1, value=4, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch(share=True)