File size: 15,615 Bytes
d87616f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Copyright 2023 DAMO Academy and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import math
import os
import shutil
import warnings

import torch

from transformers import LlamaTokenizer
from .configuration_mplug_docowl import MPLUGDocOwlConfig
from icecream import ic

try:
    from transformers import LlamaTokenizerFast
except ImportError as e:
    warnings.warn(e)
    warnings.warn(
        "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
    )
    LlamaTokenizerFast = None

"""
Sample usage:

```
python3 /pure-mlo-scratch/sfan/model-parallel-trainer/llama2megatron/convert_llama2hf.py \
    --input_dir /pure-mlo-scratch/llama/ --model_size 7 --output_dir /pure-mlo-scratch/llama/converted_HF_7B
```

Thereafter, models can be loaded via:

```py
from transformers import LlamaForCausalLM, LlamaTokenizer

model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""

llama_s2layer = {7: 32, 13: 40, 30: 60, 65: 80, 70: 80}
llama_s2heads = {7: 32, 13: 40, 30: 52, 65: 64, 70: 64}
llama_s2dense = {7: 11008, 13: 13824, 30: 17920, 65: 22016,
                 70: 28672}  # should be (2/3)*4*d, but it isn't exaclty that
llama_s2hidden = {7: 4096, 13: 5120, 32: 6656, 65: 8192, 70: 8192}


def compute_intermediate_size(n):
    return int(math.ceil(n * 8 / 3) + 255) // 256 * 256


def read_json(path):
    with open(path, "r") as f:
        return json.load(f)


def write_json(text, path):
    with open(path, "w") as f:
        json.dump(text, f)


def write_model(model_path, 
                input_base_path, 
                model_size,
                num_input_shards=1,
                num_output_shards=2,
                skip_permute=True,
                norm_eps=1e-05):
    # if os.path.exists(model_path):
    #     shutil.rmtree(model_path)
    os.makedirs(model_path, exist_ok=True)
    # tmp_model_path = os.path.join(model_path, "tmp")
    tmp_model_path = model_path
    os.makedirs(tmp_model_path, exist_ok=True)

    num_shards = num_input_shards
    n_layers = llama_s2layer[model_size]
    n_heads = llama_s2heads[model_size]
    n_heads_per_shard = n_heads // num_shards
    n_dense = llama_s2dense[model_size]
    n_hidden = llama_s2hidden[model_size]
    hidden_per_head = n_hidden // n_heads
    base = 10000.0
    inv_freq = 1.0 / (base ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head))

    # permute for sliced rotary
    def permute(w, skip_permute=skip_permute):
        if skip_permute:
            return w
        return w.view(n_heads, n_hidden // n_heads // 2, 2, n_hidden).transpose(1, 2).reshape(n_hidden, n_hidden)

    print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
    # Load weights
    if num_shards==1:
        # Not sharded
        # (The sharded implementation would also work, but this is simpler.)
        # /pure-mlo-scratch/alhernan/megatron-data/checkpoints/llama2-7b-tp4-pp1-optim/release/mp_rank_00/model_optim_rng.pt
        if os.path.exists(os.path.join(input_base_path, 'release')):
            filename = os.path.join(input_base_path, 'release', 'mp_rank_00', 'model_optim_rng.pt')
        elif input_base_path.split('/')[-1].startswith('iter_'):
            iteration = eval(input_base_path.split('/')[-1].replace('iter_', '').lstrip('0'))
            load_dir = '/'.join(input_base_path.split('/')[:-1])
            filename = os.path.join(input_base_path, 'mp_rank_00', 'model_optim_rng.pt')
            if not os.path.exists(filename):
                filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
        else:
            tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt')
            with open(tracker_filename, 'r') as f:
                metastring = f.read().strip()
            iteration = 'iter_{:07d}'.format(int(metastring))
            filename = os.path.join(input_base_path, iteration, 'mp_rank_00', 'model_optim_rng.pt')
        if not os.path.exists(filename):
            filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
        original_filename = filename
        loaded = torch.load(filename, map_location="cpu")['model']['language_model']

    else:
        # Sharded
        filenames = []
        for i in range(num_shards):
            if os.path.exists(os.path.join(input_base_path, 'release')):
                filename = os.path.join(input_base_path, 'release', f'mp_rank_{i:02d}', 'model_optim_rng.pt')
            else:
                tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt')
                with open(tracker_filename, 'r') as f:
                    metastring = f.read().strip()
                iteration = 'iter_{:07d}'.format(int(metastring))
                filename = os.path.join(input_base_path, iteration, f'mp_rank_{i:02d}', 'model_optim_rng.pt')
            if not os.path.exists(filename):
                filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
            filenames.append(filename)
        loaded = [
            torch.load(filenames[i], map_location="cpu")['model']['language_model']
            for i in range(num_shards)
        ]

    print('Llama-Megatron Loaded!')
    param_count = 0
    index_dict = {"weight_map": {}}
    
    print(f'Weighted Converting for {n_layers} layers...')
    for layer_i in range(n_layers):
        print(layer_i)
        filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
        if num_shards == 1:
            # Unsharded
            state_dict = {
                f"model.layers.{layer_i}.self_attn.q_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.q_proj.weight"],
                f"model.layers.{layer_i}.self_attn.k_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.0.weight"],
                f"model.layers.{layer_i}.self_attn.v_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.0.weight"],
                f"model.layers.{layer_i}.self_attn.k_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.1.weight"],
                f"model.layers.{layer_i}.self_attn.v_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.1.weight"],
                f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.o_proj.weight"],
                f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.gate_proj.weight"],
                f"model.layers.{layer_i}.mlp.down_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.down_proj.weight"],
                f"model.layers.{layer_i}.mlp.up_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.up_proj.weight"],
                f"model.layers.{layer_i}.input_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.0.weight"],
                f"model.layers.{layer_i}.post_attention_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.0.weight"],
                f"model.layers.{layer_i}.input_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.1.weight"],
                f"model.layers.{layer_i}.post_attention_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.1.weight"],
            }
        else:
            raise NotImplemented

        state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(tmp_model_path, filename))
        print(f'Sharded file saved to {filename}')

    filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
    if num_shards==1:
        # Unsharded
        state_dict = {
            "model.embed_tokens.weight": loaded['embedding']['word_embeddings']['weight'],
            "model.norm.weight": loaded['encoder']['norm.weight'],
            "lm_head.weight": loaded['encoder']['lm_head.weight'],
        }
    else:
        state_dict = {
            "model.embed_tokens.weight": loaded[0]['embedding']['word_embeddings']['weight'],
            "model.norm.weight": loaded[0]['encoder']['norm.weight'],
            "lm_head.weight": loaded[0]['encoder']['lm_head.weight'],
        }
        
    
    loaded_all = torch.load(original_filename, map_location="cpu")['model']
    # Vision Part
    state_dict.update({
        "model.vision_model.embeddings.cls_token": loaded_all['vision_model']['cls_token'],
        "model.vision_model.embeddings.patch_embed.weight": loaded_all['vision_model']['patch_embed']['weight'],
        "model.vision_model.embeddings.position_embedding": loaded_all['vision_model']['position_embeddings'],
        "model.vision_model.embeddings.pre_layernorm.bias": loaded_all['vision_model']['pre_layernorm']['bias'],
        "model.vision_model.embeddings.pre_layernorm.weight": loaded_all['vision_model']['pre_layernorm']['weight'],
        "model.vision_model.post_layernorm.bias": loaded_all['vision_model']['transformer']['final_layernorm.bias'],
        "model.vision_model.post_layernorm.weight": loaded_all['vision_model']['transformer']['final_layernorm.weight'],
    })
    for v_layer_idx in range(24):
        state_dict.update({
            f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.bias'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.weight'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.bias'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.weight'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.bias'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.weight'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.bias'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.weight'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.bias'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.weight'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.bias'],
            f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.weight'],
        })

    # Vision2Text Part: HReducer 
    state_dict.update({
        "model.vision2text.ln_q.weight": loaded_all['hreducer3']['ln_q']['weight'],
        "model.vision2text.ln_q.bias": loaded_all['hreducer3']['ln_q']['bias'],
        "model.vision2text.visual_fc.bias": loaded_all['hreducer3']['visual_fc']['bias'],
        "model.vision2text.visual_fc.weight": loaded_all['hreducer3']['visual_fc']['weight'],
        "model.vision2text.vit_eos": loaded_all['hreducer3']['vit_eos'],  
    })
    # reducer_before conv (layer 0) + gleu  (layer 1)
    state_dict.update({
        f"model.vision2text.reducer_before.0.weight": loaded_all['hreducer3']['reducer_before']["0.weight"],
        f"model.vision2text.reducer_before.0.bias": loaded_all['hreducer3']['reducer_before']["0.bias"],
    })
    # reducer conv 
    state_dict.update({
        f"model.vision2text.reducer.weight": loaded_all['hreducer3']['reducer']["weight"],
        f"model.vision2text.reducer.bias": loaded_all['hreducer3']['reducer']["bias"],
    })

    for k, v in state_dict.items():
        # ic(k, v)
        index_dict["weight_map"][k] = filename
        param_count += v.numel()
    torch.save(state_dict, os.path.join(tmp_model_path, filename))

    # Write configs
    index_dict["metadata"] = {"total_size": param_count * 2}
    write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))

    config = MPLUGDocOwlConfig()
    config.save_pretrained(tmp_model_path)

    # Make space so we can load the model properly now.
    del state_dict
    del loaded
    del loaded_all
    gc.collect()

def write_tokenizer(tokenizer_path, input_tokenizer_path):
    # Initialize the tokenizer based on the `spm` model
    tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
    print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
    tokenizer = tokenizer_class(input_tokenizer_path)
    tokenizer.save_pretrained(tokenizer_path)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of LLaMA_Megatron weights",
    )
    parser.add_argument(
        "--model_size",
        type=int,
        default=7,
        choices=[7, 13, 30, 65, 70],
    )
    parser.add_argument(
        "--num_input_shards",
        type=int,
        default=1,
    )
    parser.add_argument(
        "--num_output_shards",
        type=int,
        default=1,
    )
    parser.add_argument('--skip_permute', action='store_true')
    
    parser.add_argument(
        "--output_dir",
        help="Location to write HF model and tokenizer",
    )
    
    args = parser.parse_args()
    write_model(
        model_path=args.output_dir,
        input_base_path=args.input_dir,
        model_size=args.model_size,
        num_input_shards=args.num_input_shards,
        num_output_shards=args.num_output_shards,
        skip_permute=args.skip_permute
    )
    

if __name__ == "__main__":
    main()