File size: 20,424 Bytes
d87616f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import math
from typing import Any, Optional, Tuple, Union

from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer

import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint
from icecream import ic
import einops
from einops import rearrange

def get_abs_pos(abs_pos, tgt_size):
    # abs_pos: L, C
    # tgt_size: M
    # return: M, C
    src_size = int(math.sqrt(abs_pos.size(0)))
    tgt_size = int(math.sqrt(tgt_size))
    dtype = abs_pos.dtype

    if src_size != tgt_size:
        return F.interpolate(
            abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
            size=(tgt_size, tgt_size),
            mode="bicubic",
            align_corners=False,
        ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
    else:
        return abs_pos

# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb



class MplugOwlVisionEmbeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))

        self.patch_embed = nn.Conv2d(
            in_channels=3,
            out_channels=self.hidden_size,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2

        self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))

        self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        batch_size = pixel_values.size(0)
        image_embeds = self.patch_embed(pixel_values)
        image_embeds = image_embeds.flatten(2).transpose(1, 2)

        class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype)
        embeddings = torch.cat([class_embeds, image_embeds], dim=1)
        embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype)
        embeddings = self.pre_layernorm(embeddings)
        return embeddings



class MplugOwlVisionAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = nn.Dropout(config.attention_dropout)

        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, seq_len, embed_dim = hidden_states.size()

        mixed_qkv = self.query_key_value(hidden_states)

        mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
            3, 0, 2, 1, 4
        )  # [3, b, np, sq, hn]
        query_states, key_states, value_states = (
            mixed_qkv[0],
            mixed_qkv[1],
            mixed_qkv[2],
        )
        # if self.config.use_flash_attn and flash_attn_func is not None:
        if False:
            # [b*sq, np, hn]
            query_states = query_states.permute(0, 2, 1, 3).contiguous()
            query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)

            key_states = key_states.permute(0, 2, 1, 3).contiguous()
            key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)

            value_states = value_states.permute(0, 2, 1, 3).contiguous()
            value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)

            cu_seqlens = torch.arange(
                0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
            )

            context_layer = flash_attn_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens,
                cu_seqlens,
                seq_len,
                seq_len,
                self.dropout if self.training else 0.0,
                softmax_scale=self.scale,
                causal=False,
                return_attn_probs=False,
            )
            # [b*sq, np, hn] => [b, sq, np, hn]
            context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
        else:
            # Take the dot product between "query" and "key" to get the raw attention scores.
            attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))

            attention_scores = attention_scores * self.scale

            # Normalize the attention scores to probabilities.
            attention_probs = torch.softmax(attention_scores, dim=-1)

            # This is actually dropping out entire tokens to attend to, which might
            # seem a bit unusual, but is taken from the original Transformer paper.
            attention_probs = self.dropout(attention_probs)

            # Mask heads if we want to
            if head_mask is not None:
                attention_probs = attention_probs * head_mask

            context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)

        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
        context_layer = context_layer.reshape(new_context_layer_shape)

        output = self.dense(context_layer)

        outputs = (output, attention_probs) if output_attentions else (output, None)

        return outputs


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class MplugOwlMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = QuickGELU()
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class MplugOwlVisionEncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = MplugOwlVisionAttention(config)
        self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
        self.mlp = MplugOwlMLP(config)
        self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            head_mask=attention_mask,
            output_attentions=output_attentions,
        )
        hidden_states = hidden_states + residual
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)

        hidden_states = hidden_states + residual

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs
    
    
class MplugOwlVisionEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`MplugOwlVisionEncoderLayer`].

    Args:
        config (`MplugOwlVisionConfig`):
            The corresponding vision configuration for the `MplugOwlEncoder`.
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = True

    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Embedded representation of the inputs. Should be float, not int tokens.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(encoder_layer),
                    hidden_states,
                    attention_mask,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class MplugOwlVisionModel(PreTrainedModel):
    main_input_name = "pixel_values"

    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.hidden_size = config.hidden_size

        self.embeddings = MplugOwlVisionEmbeddings(config)
        self.encoder = MplugOwlVisionEncoder(config)
        self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)

        self.post_init()


    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.post_layernorm(last_hidden_state)

        pooled_output = last_hidden_state[:, 0, :]
        pooled_output = self.post_layernorm(pooled_output)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def get_input_embeddings(self):
        return self.embeddings


class MplugDocOwlHReducerModel(PreTrainedModel):
    def __init__(self, config, language_hidden_size):
        super().__init__(config)
        self.config = config
        self.ln_q = torch.nn.LayerNorm(self.config.hidden_size, eps=1e-6)
        self.conv_shape = (int(self.config.conv_shape.split('x')[0]), int(self.config.conv_shape.split('x')[1])) # 
        self.conv_patch=self.conv_shape[0]*self.conv_shape[1]
        ## feature interaction with a conv layer
        self.reducer_before = torch.nn.Sequential(
            nn.Conv2d(self.config.hidden_size, self.conv_patch*self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True),
            nn.GELU()
        )
        ## reduce visual feature length with a conv layer
        self.reducer = nn.Conv2d(self.config.hidden_size, self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True)    
        ## align visual features with language embedding with fc
        self.visual_fc = torch.nn.Linear(self.config.hidden_size, language_hidden_size)
        self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))

        self.post_init()

    def forward(
        self,
        encoder_hidden_states=None
    ):
        r"""
        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
            batch_size is the number of all images (global+crop) in a batch
            Sequence of hidden-states at the output of the last layer of the encoder.
        """
        encoder_hidden_states = encoder_hidden_states[:,1:,:] # remove the first cls token 
        B, L, C = encoder_hidden_states.shape # B, 1024=(448/14)^2, 1024

        ## feature interaction with a conv layer
        encoder_hidden_states = rearrange(encoder_hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L)))
        hidden_states = self.reducer_before(encoder_hidden_states) # B 4D H W/4
        ## reduce seq length with a conv layer
        """hidden_states = hidden_states.flatten(2).transpose(1, 2) # B 4D H W/4 -> B 4D H*W/4 -> B H*W/4 4D 
        hidden_states = rearrange(hidden_states, 'B L (X D) -> B (L X) D', X=self.conv_patch) # B (H W) D
        hidden_states = rearrange(hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) # B D H W """
        hidden_states = rearrange(hidden_states, 'B (X D) H W -> B D H (W X)', X=self.conv_patch) # B 4D H W/4 -> B D H W
        sequence_output = self.reducer(hidden_states) # B,C,H,W -> B,C,H/conv_shape[1],W/(conv_shape[1])
        sequence_output = sequence_output.flatten(2).transpose(1, 2)  # B,C,H/conv_shape[1],W/(conv_shape[1]) -> B,C,L/conv_patch -> B,L/conv_patch,C
        sequence_output = sequence_output.transpose(0, 1).contiguous() # L/conv_patch, B, C
        ## align visual features with language embedding with fc
        sequence_output = self.visual_fc(sequence_output) # L/conv_patch, B, h
        sequence_output = sequence_output.transpose(0, 1).contiguous() # B, s/4, h
        sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(B, 1, 1)], dim=1)

        return sequence_output