Spaces:
Runtime error
Runtime error
File size: 17,283 Bytes
a845a91 d5f7141 d996f1c a845a91 e7bafa9 a845a91 e7bafa9 a845a91 a7cdb17 a845a91 e7bafa9 a845a91 e7bafa9 a845a91 e7bafa9 a845a91 e7bafa9 a845a91 e7bafa9 a845a91 e7bafa9 a845a91 e7bafa9 a845a91 0a38133 536a2a7 a845a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import argparse
import datetime
import json
import os
import time
import gradio as gr
import requests
from mplug_docowl.conversation import (default_conversation, conv_templates,
SeparatorStyle)
from mplug_docowl.constants import LOGDIR
from mplug_docowl.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
from model_worker import ModelWorker
import hashlib
from huggingface_hub import snapshot_download
model_dir = snapshot_download('mPLUG/DocOwl1.5-Omni', cache_dir='./')
print(os.listdir('./'))
print(os.system('ls ./mPLUG/DocOwl1.5-Omni'))
print(os.system('ls ./model/mPLUG/DocOwl1.5-Omni'))
print(os.system('ls ./models--mPLUG--DocOwl1.5-Omni'))
logger = build_logger("gradio_web_server_local", "gradio_web_server_local.log")
headers = {"User-Agent": "mPLUG-DocOwl1.5 Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
state = default_conversation.copy()
return state
def vote_last_response(state, vote_type, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:3584] # Hard cut-off
if image is not None:
text = text[:3500] # Hard cut-off for images
if '<|image|>' not in text:
text = '<|image|>' + text
text = (text, image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def http_bot(state, temperature, top_p, max_new_tokens, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
template_name = "mplug_owl2"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 2048),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
# response = requests.post(worker_addr + "/worker_generate_stream",
# headers=headers, json=pload, stream=True, timeout=10)
# for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
response = model.generate_stream_gate(pload)
for chunk in response:
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
<h1 align="center"><a href="https://github.com/X-PLUG/mPLUG-DocOwl"><img src="https://github.com/X-PLUG/mPLUG-DocOwl/raw/main/assets/mPLUG_new1.png", alt="mPLUG-DocOwl" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
<h2 align="center"> mPLUG-DocOwl1.5: Unified Stucture Learning for OCR-free Document Understanding</h2>
<h5 align="center"> If you like our project, please give us a star ✨ on Github for latest update. </h2>
<h5 align="center"> Note: This demo is temporarily only supported for English Document Understanding. The Chinese-and-English model is under development.</h2>
<h5 align="center"> 注意: 当前Demo只支持英文文档理解, 中英模型正在全力开发中。</h2>
<h5 align="center"> Note: If you want a detailed explanation, please remember to add a prompot "Give a detailed explanation." after the question.</h2>
<h5 align="center"> 注意: 如果你想要详细的推理解释, 请在问题后面加上“Give a detailed explanation.”。</h2>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/X-PLUG/mPLUG-DocOwl'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/abs/2403.12895"><img src="https://img.shields.io/badge/Arxiv-2403.12895-red"></a>
<a href='https://github.com/X-PLUG/mPLUG-DocOwl/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/mPLUG-DocOwl.svg?style=social'></a>
</div>
</div>
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="mPLUG-Owl2", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/examples/cvpr.png", "what is this schedule for? Give detailed explanation."],
[f"{cur_dir}/examples/fflw0023_1.png", "Parse texts in the image."],
[f"{cur_dir}/examples/col_type_46452.jpg", "Convert the table into Markdown format."],
[f"{cur_dir}/examples/col_type_177029.jpg", "What is unusual about this image? Provide detailed explanation."],
[f"{cur_dir}/examples/multi_col_60204.png", "Convert the illustration into Markdown language."],
[f"{cur_dir}/examples/Rebecca_(1939_poster)_Small.jpeg", "What is the name of the movie in the poster? Provide detailed explanation."],
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image? Provide detailed explanation."],
], inputs=[imagebox, textbox])
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="Chatbot", label="mPLUG-DocOwl1.5 Chatbot", height=600)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
state,
[textbox, upvote_btn, downvote_btn, flag_btn],
queue=False,
concurrency_limit=10,
)
downvote_btn.click(
downvote_last_response,
state,
[textbox, upvote_btn, downvote_btn, flag_btn],
queue=False,
concurrency_limit=10,
)
flag_btn.click(
flag_last_response,
state,
[textbox, upvote_btn, downvote_btn, flag_btn],
queue=False,
concurrency_limit=10,
)
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False,
concurrency_limit=10,
).then(
http_bot,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False,
concurrency_limit=10,
)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False,
concurrency_limit=10,
).then(
http_bot,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list
)
demo.load(
load_demo,
[url_params],
state,
js=get_window_url_params,
queue=False
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--model-path", type=str, default="mPLUG/DocOwl1.5-Omni")
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
model = ModelWorker(args.model_path, None, None,
resolution=448,
anchors='grid_9',
add_global_img=True,
load_8bit=args.load_8bit,
load_4bit=args.load_4bit,
device=args.device)
logger.info(args)
demo = build_demo(args.embed)
demo.queue(
api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=False
)
|