Spaces:
Runtime error
Runtime error
from einops import rearrange, repeat | |
import torch | |
from torchvision import transforms | |
from PIL import Image, ImageFile | |
import random | |
from torchvision.ops.boxes import box_area | |
from torchvision.transforms.transforms import InterpolationMode | |
from torchvision.transforms import functional as F | |
import numpy as np | |
from icecream import ic | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
ImageFile.MAX_IMAGE_PIXELS = None | |
Image.MAX_IMAGE_PIXELS = None | |
def box_iou(boxes1, area1, boxes2, eps=1e-5): | |
area2 = box_area(boxes2) | |
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] | |
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] | |
wh = (rb - lt).clamp(min=0) # [N,M,2] | |
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] | |
union = area1[:, None] + area2 - inter | |
iou = inter / (union+eps) | |
return iou, union | |
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5): | |
# anchors x1 y1 x2 y2 | |
# image_size: (h, w) | |
# xyxy | |
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0) | |
boxes1 = anchors | |
boxes2 = input_image_bbox | |
boxes3 = anchors.clone() | |
# y2 | |
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou | |
area1 = anchors_areas | |
iou, _ = box_iou(boxes1, area1, boxes2) | |
iou = iou.squeeze(1) | |
shape_iou, _ = box_iou(boxes1, area1, boxes3) | |
shape_iou = shape_iou.diag() | |
# 优先匹配形状接近 再匹配分辨率接近 | |
index = torch.argmax(shape_iou*100+iou,dim=0) | |
return index | |
class AnchorResize(torch.nn.Module): | |
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None): | |
super().__init__() | |
# xyxy | |
self.anchors = torch.tensor( | |
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]] | |
for _ in anchors], requires_grad=False | |
) | |
self.anchor_areas = box_area(self.anchors) | |
self.interpolation = interpolation | |
self.antialias = antialias | |
def forward(self, img, skip_resize=False): | |
""" | |
Args: | |
img (PIL Image or Tensor): Image to be scaled. | |
Returns: | |
PIL Image or Tensor: Rescaled image. | |
""" | |
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0])) | |
target_size = self.anchors[selected_anchor][2:].tolist() # w,h | |
if skip_resize: | |
# for debug | |
return selected_anchor | |
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor | |
def __repr__(self) -> str: | |
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})" | |
return f"{self.__class__.__name__}{detail}" | |
grid_dict = { | |
'grid_1':[ | |
(1,1)], | |
'grid_4':[ | |
(1,1), | |
(1,2),(2,1), | |
(1,3),(3,1), | |
(2,2),(1,4),(4,1)], | |
'grid_9':[ | |
(1,1), | |
(1,2),(2,1), | |
(1,3),(3,1), | |
(2,2),(1,4),(4,1), | |
(1,5),(5,1), | |
(1,6),(6,1),(2,3),(3,2), | |
(1,7),(7,1), | |
(4,2),(2,4),(1,8),(8,1), | |
(3,3),(1,9),(9,1)], | |
'grid_3x3':[ | |
(3,3)], | |
'grid_20':[ | |
(1, 1), | |
(1, 2), (2, 1), | |
(1, 3), (3, 1), (1, 4), (2, 2), (4, 1), | |
(1, 5), (5, 1), | |
(1, 6), (2, 3), (3, 2), (6, 1), | |
(1, 7), (7, 1), | |
(1, 8), (2, 4), (4, 2), (8, 1), | |
(1, 9), (3, 3), (9, 1), | |
(1, 10), (2, 5), (5, 2), (10, 1), | |
(1, 11), (11, 1), | |
(2, 6), (3, 4), (4, 3), (6, 2), | |
(2, 7), (7, 2), | |
(3, 5), (5, 3), | |
(2, 8), (4, 4), (8, 2), | |
(2, 9), (3, 6), (6, 3), (9, 2), | |
(2, 10), (4, 5), (5, 4), (10, 2)] | |
} | |
class DocProcessor(): | |
def __init__(self, image_size=224, anchors='grid_9', add_global_img=True, add_textual_crop_indicator=False): | |
self.add_global_img = add_global_img | |
self.add_textual_crop_indicator = add_textual_crop_indicator | |
self.media_token= "<|image|>" | |
# h,w | |
if isinstance(image_size, int): | |
image_size = (image_size, image_size) | |
self.image_size = image_size | |
# h,w | |
anchors = grid_dict[anchors] | |
self.anchors = [tuple(_) for _ in anchors] | |
self.anchor_max = max([max(_) for _ in self.anchors]) | |
# xywh -> xyxy | |
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC) | |
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC) | |
self.image_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
]) | |
def _process_image(self, images): | |
new_images = [] | |
new_patch_position = [] | |
num_image_mult = [] | |
for image in images: | |
if self.add_global_img: | |
nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0) | |
image, selected_anchor = self.resizer(image) | |
image_input = self.image_transform(image) # h,w,3 -> 3,h,w | |
# rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1]) | |
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1]) | |
if self.add_global_img: | |
image_input = torch.cat([nocut_image, image_input], dim=0) | |
anchor = self.anchors[selected_anchor] # w,h | |
ic(anchor) | |
patch_position = torch.cat([ | |
repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]), | |
repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2) | |
patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw) | |
if self.add_global_img: | |
patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0) | |
new_images.append(image_input) | |
new_patch_position.append(patch_position) | |
num_image_mult.append(patch_position.shape[0]) | |
new_images = torch.cat(new_images,dim=0) | |
new_patch_position = torch.cat(new_patch_position, dim=0) | |
return new_images, new_patch_position, num_image_mult | |
def __call__(self, images=None, query=None): | |
assert images is not None | |
if not isinstance(images, list): | |
images = [images] | |
image_pils = [] | |
for image in images: | |
if isinstance(image, str): | |
image = Image.open(image).convert('RGB') | |
else: | |
image = image.convert('RGB') | |
# ic(image.size) | |
image_pils.append(image) | |
image_data, patch_position, num_image_mult = self._process_image(image_pils) | |
assert self.media_token in query | |
text_list = query.split(self.media_token) | |
text = text_list[0] | |
image_token_ptr = 0 | |
for next_text in text_list[1:]: | |
if self.add_textual_crop_indicator: | |
# generate image placeholders with interleaved texutual crop indicator | |
# e.g. <global_img><|image|><crop_img_row0_col0><|image|><crop_img_row0_col1><|image|>... | |
for patch_pos in patch_position.tolist(): | |
# global non-crop image | |
if patch_pos[0] == self.anchor_max and patch_pos[1] == self.anchor_max: | |
text += '<global_img><|image|>' | |
else: | |
row_col = 'row'+str(patch_pos[0])+'_col'+str(patch_pos[1]) | |
text += '<crop_img_'+row_col+'><|image|>' | |
else: | |
# generate successive image placeholders for a image, 1 crop img == 1 <|image|> | |
text += '<|image|>'*num_image_mult[image_token_ptr] | |
text += next_text | |
image_token_ptr += 1 | |
return image_data, patch_position, text |