File size: 4,922 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/transform_reduce.h>
#include <thrust/functional.h>
#include <thrust/extrema.h>
#include <cmath>
#include <limits>
#include <iostream>

// This example computes several statistical properties of a data
// series in a single reduction.  The algorithm is described in detail here:
// http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
//
// Thanks to Joseph Rhoads for contributing this example


// structure used to accumulate the moments and other 
// statistical properties encountered so far.
template <typename T>
struct summary_stats_data
{
    T n;
    T min;
    T max;
    T mean;
    T M2;
    T M3;
    T M4;
    
    // initialize to the identity element
    void initialize()
    {
      n = mean = M2 = M3 = M4 = 0;
      min = std::numeric_limits<T>::max();
      max = std::numeric_limits<T>::min();
    }

    T variance()   { return M2 / (n - 1); }
    T variance_n() { return M2 / n; }
    T skewness()   { return std::sqrt(n) * M3 / std::pow(M2, (T) 1.5); }
    T kurtosis()   { return n * M4 / (M2 * M2); }
};

// stats_unary_op is a functor that takes in a value x and
// returns a variace_data whose mean value is initialized to x.
template <typename T>
struct summary_stats_unary_op
{
    __host__ __device__
    summary_stats_data<T> operator()(const T& x) const
    {
         summary_stats_data<T> result;
         result.n    = 1;
         result.min  = x;
         result.max  = x;
         result.mean = x;
         result.M2   = 0;
         result.M3   = 0;
         result.M4   = 0;

         return result;
    }
};

// summary_stats_binary_op is a functor that accepts two summary_stats_data 
// structs and returns a new summary_stats_data which are an
// approximation to the summary_stats for 
// all values that have been agregated so far
template <typename T>
struct summary_stats_binary_op 
    : public thrust::binary_function<const summary_stats_data<T>&, 
                                     const summary_stats_data<T>&,
                                           summary_stats_data<T> >
{
    __host__ __device__
    summary_stats_data<T> operator()(const summary_stats_data<T>& x, const summary_stats_data <T>& y) const
    {
        summary_stats_data<T> result;
        
        // precompute some common subexpressions
        T n  = x.n + y.n;
        T n2 = n  * n;
        T n3 = n2 * n;

        T delta  = y.mean - x.mean;
        T delta2 = delta  * delta;
        T delta3 = delta2 * delta;
        T delta4 = delta3 * delta;
        
        //Basic number of samples (n), min, and max
        result.n   = n;
        result.min = thrust::min(x.min, y.min);
        result.max = thrust::max(x.max, y.max);

        result.mean = x.mean + delta * y.n / n;

        result.M2  = x.M2 + y.M2;
        result.M2 += delta2 * x.n * y.n / n;

        result.M3  = x.M3 + y.M3;
        result.M3 += delta3 * x.n * y.n * (x.n - y.n) / n2; 
        result.M3 += (T) 3.0 * delta * (x.n * y.M2 - y.n * x.M2) / n;
    
        result.M4  = x.M4 + y.M4;
        result.M4 += delta4 * x.n * y.n * (x.n * x.n - x.n * y.n + y.n * y.n) / n3;
        result.M4 += (T) 6.0 * delta2 * (x.n * x.n * y.M2 + y.n * y.n * x.M2) / n2;
        result.M4 += (T) 4.0 * delta * (x.n * y.M3 - y.n * x.M3) / n;
        
        return result;
    }
};

template <typename Iterator>
void print_range(const std::string& name, Iterator first, Iterator last)
{
    typedef typename std::iterator_traits<Iterator>::value_type T;

    std::cout << name << ": ";
    thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " "));  
    std::cout << "\n";
}


int main(void)
{
    typedef float T;

    // initialize host array
    T h_x[] = {4, 7, 13, 16};

    // transfer to device
    thrust::device_vector<T> d_x(h_x, h_x + sizeof(h_x) / sizeof(T));

    // setup arguments
    summary_stats_unary_op<T>  unary_op;
    summary_stats_binary_op<T> binary_op;
    summary_stats_data<T>      init;

    init.initialize();

    // compute summary statistics
    summary_stats_data<T> result = thrust::transform_reduce(d_x.begin(), d_x.end(), unary_op, init, binary_op);

    std::cout <<"******Summary Statistics Example*****"<<std::endl;
    print_range("The data", d_x.begin(), d_x.end());

    std::cout <<"Count              : "<< result.n << std::endl;
    std::cout <<"Minimum            : "<< result.min <<std::endl;
    std::cout <<"Maximum            : "<< result.max <<std::endl;
    std::cout <<"Mean               : "<< result.mean << std::endl;
    std::cout <<"Variance           : "<< result.variance() << std::endl;
    std::cout <<"Standard Deviation : "<< std::sqrt(result.variance_n()) << std::endl;
    std::cout <<"Skewness           : "<< result.skewness() << std::endl;
    std::cout <<"Kurtosis           : "<< result.kurtosis() << std::endl;

    return 0;
}