Spaces:
Runtime error
Runtime error
File size: 70,125 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 |
import json
import copy
import xml.etree.ElementTree as etree
from xml.dom import minidom
import warnings
import torch
import numpy as np
import re
import sys
import pydiffvg
import math
from collections import namedtuple
import cssutils
class SvgOptimizationSettings:
default_params = {
"optimize_color": True,
"color_lr": 2e-3,
"optimize_alpha": False,
"alpha_lr": 2e-3,
"optimizer": "Adam",
"transforms": {
"optimize_transforms":True,
"transform_mode":"rigid",
"translation_mult":1e-3,
"transform_lr":2e-3
},
"circles": {
"optimize_center": True,
"optimize_radius": True,
"shape_lr": 2e-1
},
"paths": {
"optimize_points": True,
"shape_lr": 2e-1
},
"gradients": {
"optimize_stops": True,
"stop_lr": 2e-3,
"optimize_color": True,
"color_lr": 2e-3,
"optimize_alpha": False,
"alpha_lr": 2e-3,
"optimize_location": True,
"location_lr": 2e-1
}
}
optims = {
"Adam": torch.optim.Adam,
"SGD": torch.optim.SGD,
"ASGD": torch.optim.ASGD,
}
#region methods
def __init__(self, f=None):
self.store = {}
if f is None:
self.store["default"] = copy.deepcopy(SvgOptimizationSettings.default_params)
else:
self.store = json.load(f)
# create default alias for root
def default_name(self, dname):
self.dname = dname
if dname not in self.store:
self.store[dname] = self.store["default"]
def retrieve(self, node_id):
if node_id not in self.store:
return (self.store["default"], False)
else:
return (self.store[node_id], True)
def reset_to_defaults(self, node_id):
if node_id in self.store:
del self.store[node_id]
return self.store["default"]
def undefault(self, node_id):
if node_id not in self.store:
self.store[node_id] = copy.deepcopy(self.store["default"])
return self.store[node_id]
def override_optimizer(self, optimizer):
if optimizer is not None:
for v in self.store.values():
v["optimizer"] = optimizer
def global_override(self, path, value):
for store in self.store.values():
d = store
for key in path[:-1]:
d = d[key]
d[path[-1]] = value
def save(self, file):
self.store["default"] = self.store[self.dname]
json.dump(self.store, file, indent="\t")
#endregion
class OptimizableSvg:
class TransformTools:
@staticmethod
def parse_matrix(vals):
assert(len(vals)==6)
return np.array([[vals[0],vals[2],vals[4]],[vals[1], vals[3], vals[5]],[0,0,1]])
@staticmethod
def parse_translate(vals):
assert(len(vals)>=1 and len(vals)<=2)
mat=np.eye(3)
mat[0,2]=vals[0]
if len(vals)>1:
mat[1,2]=vals[1]
return mat
@staticmethod
def parse_rotate(vals):
assert (len(vals) == 1 or len(vals) == 3)
mat = np.eye(3)
rads=math.radians(vals[0])
sint=math.sin(rads)
cost=math.cos(rads)
mat[0:2, 0:2] = np.array([[cost,-sint],[sint,cost]])
if len(vals) > 1:
tr1=parse_translate(vals[1:3])
tr2=parse_translate([-vals[1],-vals[2]])
mat=tr1 @ mat @ tr2
return mat
@staticmethod
def parse_scale(vals):
assert (len(vals) >= 1 and len(vals) <= 2)
d=np.array([vals[0], vals[1] if len(vals)>1 else vals[0],1])
return np.diag(d)
@staticmethod
def parse_skewx(vals):
assert(len(vals)==1)
m=np.eye(3)
m[0,1]=vals[0]
return m
@staticmethod
def parse_skewy(vals):
assert (len(vals) == 1)
m = np.eye(3)
m[1, 0] = vals[0]
return m
@staticmethod
def transformPoints(pointsTensor, transform):
assert(transform is not None)
one=torch.ones((pointsTensor.shape[0],1),device=pointsTensor.device)
homo_points = torch.cat([pointsTensor, one], dim=1)
mult = transform.mm(homo_points.permute(1,0)).permute(1,0)
tfpoints=mult[:, 0:2].contiguous()
#print(torch.norm(mult[:,2]-one))
assert(pointsTensor.shape == tfpoints.shape)
return tfpoints
@staticmethod
def promote_numpy(M):
ret = np.eye(3)
ret[0:2, 0:2] = M
return ret
@staticmethod
def recompose_numpy(Theta,ScaleXY,ShearX,TXY):
cost=math.cos(Theta)
sint=math.sin(Theta)
Rot=np.array([[cost, -sint],[sint, cost]])
Scale=np.diag(ScaleXY)
Shear=np.eye(2)
Shear[0,1]=ShearX
Translate=np.eye(3)
Translate[0:2,2]=TXY
M=OptimizableSvg.TransformTools.promote_numpy(Rot @ Scale @ Shear) @ Translate
return M
@staticmethod
def promote(m):
M=torch.eye(3).to(m.device)
M[0:2,0:2]=m
return M
@staticmethod
def make_rot(Theta):
sint=Theta.sin().squeeze()
cost=Theta.cos().squeeze()
#m=torch.tensor([[cost, -sint],[sint, cost]])
Rot=torch.stack((torch.stack((cost,-sint)),torch.stack((sint,cost))))
return Rot
@staticmethod
def make_scale(ScaleXY):
if ScaleXY.squeeze().dim()==0:
ScaleXY=ScaleXY.squeeze()
#uniform scale
return torch.diag(torch.stack([ScaleXY,ScaleXY])).to(ScaleXY.device)
else:
return torch.diag(ScaleXY).to(ScaleXY.device)
@staticmethod
def make_shear(ShearX):
m=torch.eye(2).to(ShearX.device)
m[0,1]=ShearX
return m
@staticmethod
def make_translate(TXY):
m=torch.eye(3).to(TXY.device)
m[0:2,2]=TXY
return m
@staticmethod
def recompose(Theta,ScaleXY,ShearX,TXY):
Rot=OptimizableSvg.TransformTools.make_rot(Theta)
Scale=OptimizableSvg.TransformTools.make_scale(ScaleXY)
Shear=OptimizableSvg.TransformTools.make_shear(ShearX)
Translate=OptimizableSvg.TransformTools.make_translate(TXY)
return OptimizableSvg.TransformTools.promote(Rot.mm(Scale).mm(Shear)).mm(Translate)
TransformDecomposition=namedtuple("TransformDecomposition","theta scale shear translate")
TransformProperties=namedtuple("TransformProperties", "has_rotation has_scale has_mirror scale_uniform has_shear has_translation")
@staticmethod
def make_named(decomp):
if not isinstance(decomp,OptimizableSvg.TransformTools.TransformDecomposition):
decomp=OptimizableSvg.TransformTools.TransformDecomposition(theta=decomp[0],scale=decomp[1],shear=decomp[2],translate=decomp[3])
return decomp
@staticmethod
def analyze_transform(decomp):
decomp=OptimizableSvg.TransformTools.make_named(decomp)
epsilon=1e-3
has_rotation=abs(decomp.theta)>epsilon
has_scale=abs((abs(decomp.scale)-1)).max()>epsilon
scale_len=decomp.scale.squeeze().ndim>0 if isinstance(decomp.scale,np.ndarray) else decomp.scale.squeeze().dim() > 0
has_mirror=scale_len and decomp.scale[0]*decomp.scale[1] < 0
scale_uniform=not scale_len or abs(abs(decomp.scale[0])-abs(decomp.scale[1]))<epsilon
has_shear=abs(decomp.shear)>epsilon
has_translate=max(abs(decomp.translate[0]),abs(decomp.translate[1]))>epsilon
return OptimizableSvg.TransformTools.TransformProperties(has_rotation=has_rotation,has_scale=has_scale,has_mirror=has_mirror,scale_uniform=scale_uniform,has_shear=has_shear,has_translation=has_translate)
@staticmethod
def check_and_decomp(M):
decomp=OptimizableSvg.TransformTools.decompose(M) if M is not None else OptimizableSvg.TransformTools.TransformDecomposition(theta=0,scale=(1,1),shear=0,translate=(0,0))
props=OptimizableSvg.TransformTools.analyze_transform(decomp)
return (decomp, props)
@staticmethod
def tf_to_string(M):
tfstring = "matrix({} {} {} {} {} {})".format(M[0, 0], M[1, 0], M[0, 1], M[1, 1], M[0, 2], M[1, 2])
return tfstring
@staticmethod
def decomp_to_string(decomp):
decomp = OptimizableSvg.TransformTools.make_named(decomp)
ret=""
props=OptimizableSvg.TransformTools.analyze_transform(decomp)
if props.has_rotation:
ret+="rotate({}) ".format(math.degrees(decomp.theta.item()))
if props.has_scale:
if decomp.scale.dim()==0:
ret += "scale({}) ".format(decomp.scale.item())
else:
ret+="scale({} {}) ".format(decomp.scale[0], decomp.scale[1])
if props.has_shear:
ret+="skewX({}) ".format(decomp.shear.item())
if props.has_translation:
ret+="translate({} {}) ".format(decomp.translate[0],decomp.translate[1])
return ret
@staticmethod
def decompose(M):
m = M[0:2, 0:2]
t0=M[0:2, 2]
#get translation so that we can post-multiply with it
TXY=np.linalg.solve(m,t0)
T=np.eye(3)
T[0:2,2]=TXY
q, r = np.linalg.qr(m)
ref = np.array([[1, 0], [0, np.sign(np.linalg.det(q))]])
Rot = np.dot(q, ref)
ref2 = np.array([[1, 0], [0, np.sign(np.linalg.det(r))]])
r2 = np.dot(ref2, r)
Ref = np.dot(ref, ref2)
sc = np.diag(r2)
Scale = np.diagflat(sc)
Shear = np.eye(2)
Shear[0, 1] = r2[0, 1] / sc[0]
#the actual shear coefficient
ShearX=r2[0, 1] / sc[0]
if np.sum(sc) < 0:
# both scales are negative, flip this and add a 180 rotation
Rot = np.dot(Rot, -np.eye(2))
Scale = -Scale
Theta = math.atan2(Rot[1, 0], Rot[0, 0])
ScaleXY = np.array([Scale[0,0],Scale[1,1]*Ref[1,1]])
return OptimizableSvg.TransformTools.TransformDecomposition(theta=Theta, scale=ScaleXY, shear=ShearX, translate=TXY)
#region suboptimizers
#optimizes color, but really any tensor that needs to stay between 0 and 1 per-entry
class ColorOptimizer:
def __init__(self,tensor,optim_type,lr):
self.tensor=tensor
self.optim=optim_type([tensor],lr=lr)
def zero_grad(self):
self.optim.zero_grad()
def step(self):
self.optim.step()
self.tensor.data.clamp_(min=1e-4,max=1.)
#optimizes gradient stop positions
class StopOptimizer:
def __init__(self,stops,optim_type,lr):
self.stops=stops
self.optim=optim_type([stops],lr=lr)
def zero_grad(self):
self.optim.zero_grad()
def step(self):
self.optim.step()
self.stops.data.clamp_(min=0., max=1.)
self.stops.data, _ = self.stops.sort()
self.stops.data[0] = 0.
self.stops.data[-1]=1.
#optimizes gradient: stop, positions, colors+opacities, locations
class GradientOptimizer:
def __init__(self, begin, end, offsets, stops, optim_params):
self.begin=begin.clone().detach() if begin is not None else None
self.end=end.clone().detach() if end is not None else None
self.offsets=offsets.clone().detach() if offsets is not None else None
self.stop_colors=stops[:,0:3].clone().detach() if stops is not None else None
self.stop_alphas=stops[:,3].clone().detach() if stops is not None else None
self.optimizers=[]
if optim_params["gradients"]["optimize_stops"] and self.offsets is not None:
self.offsets.requires_grad_(True)
self.optimizers.append(OptimizableSvg.StopOptimizer(self.offsets,SvgOptimizationSettings.optims[optim_params["optimizer"]],optim_params["gradients"]["stop_lr"]))
if optim_params["gradients"]["optimize_color"] and self.stop_colors is not None:
self.stop_colors.requires_grad_(True)
self.optimizers.append(OptimizableSvg.ColorOptimizer(self.stop_colors,SvgOptimizationSettings.optims[optim_params["optimizer"]],optim_params["gradients"]["color_lr"]))
if optim_params["gradients"]["optimize_alpha"] and self.stop_alphas is not None:
self.stop_alphas.requires_grad_(True)
self.optimizers.append(OptimizableSvg.ColorOptimizer(self.stop_alphas,SvgOptimizationSettings.optims[optim_params["optimizer"]],optim_params["gradients"]["alpha_lr"]))
if optim_params["gradients"]["optimize_location"] and self.begin is not None and self.end is not None:
self.begin.requires_grad_(True)
self.end.requires_grad_(True)
self.optimizers.append(SvgOptimizationSettings.optims[optim_params["optimizer"]]([self.begin,self.end],lr=optim_params["gradients"]["location_lr"]))
def get_vals(self):
return self.begin, self.end, self.offsets, torch.cat((self.stop_colors,self.stop_alphas.unsqueeze(1)),1) if self.stop_colors is not None and self.stop_alphas is not None else None
def zero_grad(self):
for optim in self.optimizers:
optim.zero_grad()
def step(self):
for optim in self.optimizers:
optim.step()
class TransformOptimizer:
def __init__(self,transform,optim_params):
self.transform=transform
self.optimizes=optim_params["transforms"]["optimize_transforms"] and transform is not None
self.params=copy.deepcopy(optim_params)
self.transform_mode=optim_params["transforms"]["transform_mode"]
if self.optimizes:
optimvars=[]
self.residual=None
lr=optim_params["transforms"]["transform_lr"]
tmult=optim_params["transforms"]["translation_mult"]
decomp,props=OptimizableSvg.TransformTools.check_and_decomp(transform.cpu().numpy())
if self.transform_mode=="move":
#only translation and rotation should be set
if props.has_scale or props.has_shear or props.has_mirror:
print("Warning: set to optimize move only, but input transform has residual scale or shear")
self.residual=self.transform.clone().detach().requires_grad_(False)
self.Theta=torch.tensor(0,dtype=torch.float32,requires_grad=True,device=transform.device)
self.translation=torch.tensor([0, 0],dtype=torch.float32,requires_grad=True,device=transform.device)
else:
self.residual=None
self.Theta=torch.tensor(decomp.theta,dtype=torch.float32,requires_grad=True,device=transform.device)
self.translation=torch.tensor(decomp.translate,dtype=torch.float32,requires_grad=True,device=transform.device)
optimvars+=[{'params':x,'lr':lr} for x in [self.Theta]]+[{'params':self.translation,'lr':lr*tmult}]
elif self.transform_mode=="rigid":
#only translation, rotation, and uniform scale should be set
if props.has_shear or props.has_mirror or not props.scale_uniform:
print("Warning: set to optimize rigid transform only, but input transform has residual shear, mirror or non-uniform scale")
self.residual = self.transform.clone().detach().requires_grad_(False)
self.Theta = torch.tensor(0, dtype=torch.float32, requires_grad=True,device=transform.device)
self.translation = torch.tensor([0, 0], dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale=torch.tensor(1, dtype=torch.float32, requires_grad=True,device=transform.device)
else:
self.residual = None
self.Theta = torch.tensor(decomp.theta, dtype=torch.float32, requires_grad=True,device=transform.device)
self.translation = torch.tensor(decomp.translate, dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale = torch.tensor(decomp.scale[0], dtype=torch.float32, requires_grad=True,device=transform.device)
optimvars += [{'params':x,'lr':lr} for x in [self.Theta, self.scale]]+[{'params':self.translation,'lr':lr*tmult}]
elif self.transform_mode=="similarity":
if props.has_shear or not props.scale_uniform:
print("Warning: set to optimize rigid transform only, but input transform has residual shear or non-uniform scale")
self.residual = self.transform.clone().detach().requires_grad_(False)
self.Theta = torch.tensor(0, dtype=torch.float32, requires_grad=True,device=transform.device)
self.translation = torch.tensor([0, 0], dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale=torch.tensor(1, dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale_sign=torch.tensor(1,dtype=torch.float32,requires_grad=False,device=transform.device)
else:
self.residual = None
self.Theta = torch.tensor(decomp.theta, dtype=torch.float32, requires_grad=True,device=transform.device)
self.translation = torch.tensor(decomp.translate, dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale = torch.tensor(decomp.scale[0], dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale_sign = torch.tensor(np.sign(decomp.scale[0]*decomp.scale[1]), dtype=torch.float32, requires_grad=False,device=transform.device)
optimvars += [{'params':x,'lr':lr} for x in [self.Theta, self.scale]]+[{'params':self.translation,'lr':lr*tmult}]
elif self.transform_mode=="affine":
self.Theta = torch.tensor(decomp.theta, dtype=torch.float32, requires_grad=True,device=transform.device)
self.translation = torch.tensor(decomp.translate, dtype=torch.float32, requires_grad=True,device=transform.device)
self.scale = torch.tensor(decomp.scale, dtype=torch.float32, requires_grad=True,device=transform.device)
self.shear = torch.tensor(decomp.shear, dtype=torch.float32, requires_grad=True,device=transform.device)
optimvars += [{'params':x,'lr':lr} for x in [self.Theta, self.scale, self.shear]]+[{'params':self.translation,'lr':lr*tmult}]
else:
raise ValueError("Unrecognized transform mode '{}'".format(self.transform_mode))
self.optimizer=SvgOptimizationSettings.optims[optim_params["optimizer"]](optimvars)
def get_transform(self):
if not self.optimizes:
return self.transform
else:
if self.transform_mode == "move":
composed=OptimizableSvg.TransformTools.recompose(self.Theta,torch.tensor([1.],device=self.Theta.device),torch.tensor(0.,device=self.Theta.device),self.translation)
return self.residual.mm(composed) if self.residual is not None else composed
elif self.transform_mode == "rigid":
composed = OptimizableSvg.TransformTools.recompose(self.Theta, self.scale, torch.tensor(0.,device=self.Theta.device),
self.translation)
return self.residual.mm(composed) if self.residual is not None else composed
elif self.transform_mode == "similarity":
composed=OptimizableSvg.TransformTools.recompose(self.Theta, torch.cat((self.scale,self.scale*self.scale_sign)),torch.tensor(0.,device=self.Theta.device),self.translation)
return self.residual.mm(composed) if self.residual is not None else composed
elif self.transform_mode == "affine":
composed = OptimizableSvg.TransformTools.recompose(self.Theta, self.scale, self.shear, self.translation)
return composed
else:
raise ValueError("Unrecognized transform mode '{}'".format(self.transform_mode))
def tfToString(self):
if self.transform is None:
return None
elif not self.optimizes:
return OptimizableSvg.TransformTools.tf_to_string(self.transform)
else:
if self.transform_mode == "move":
str=OptimizableSvg.TransformTools.decomp_to_string((self.Theta,torch.tensor([1.]),torch.tensor(0.),self.translation))
return (OptimizableSvg.TransformTools.tf_to_string(self.residual) if self.residual is not None else "")+" "+str
elif self.transform_mode == "rigid":
str = OptimizableSvg.TransformTools.decomp_to_string((self.Theta, self.scale, torch.tensor(0.),
self.translation))
return (OptimizableSvg.TransformTools.tf_to_string(self.residual) if self.residual is not None else "")+" "+str
elif self.transform_mode == "similarity":
str=OptimizableSvg.TransformTools.decomp_to_string((self.Theta, torch.cat((self.scale,self.scale*self.scale_sign)),torch.tensor(0.),self.translation))
return (OptimizableSvg.TransformTools.tf_to_string(self.residual) if self.residual is not None else "")+" "+str
elif self.transform_mode == "affine":
str = OptimizableSvg.TransformTools.decomp_to_string((self.Theta, self.scale, self.shear, self.translation))
return composed
def zero_grad(self):
if self.optimizes:
self.optimizer.zero_grad()
def step(self):
if self.optimizes:
self.optimizer.step()
#endregion
#region Nodes
class SvgNode:
def __init__(self,id,transform,appearance,settings):
self.id=id
self.children=[]
self.optimizers=[]
self.device = settings.device
self.transform=torch.tensor(transform,dtype=torch.float32,device=self.device) if transform is not None else None
self.transform_optim=OptimizableSvg.TransformOptimizer(self.transform,settings.retrieve(self.id)[0])
self.optimizers.append(self.transform_optim)
self.proc_appearance(appearance,settings.retrieve(self.id)[0])
def tftostring(self):
return self.transform_optim.tfToString()
def appearanceToString(self):
appstring=""
for key,value in self.appearance.items():
if key in ["fill", "stroke"]:
#a paint-type value
if value[0] == "none":
appstring+="{}:none;".format(key)
elif value[0] == "solid":
appstring += "{}:{};".format(key,OptimizableSvg.rgb_to_string(value[1]))
elif value[0] == "url":
appstring += "{}:url(#{});".format(key,value[1].id)
#appstring += "{}:{};".format(key,"#ff00ff")
elif key in ["opacity", "fill-opacity", "stroke-opacity", "stroke-width", "fill-rule"]:
appstring+="{}:{};".format(key,value)
else:
raise ValueError("Don't know how to write appearance parameter '{}'".format(key))
return appstring
def write_xml_common_attrib(self,node,tfname="transform"):
if self.transform is not None:
node.set(tfname,self.tftostring())
if len(self.appearance)>0:
node.set('style',self.appearanceToString())
if self.id is not None:
node.set('id',self.id)
def proc_appearance(self,appearance,optim_params):
self.appearance=appearance
for key, value in appearance.items():
if key == "fill" or key == "stroke":
if optim_params["optimize_color"] and value[0]=="solid":
value[1].requires_grad_(True)
self.optimizers.append(OptimizableSvg.ColorOptimizer(value[1],SvgOptimizationSettings.optims[optim_params["optimizer"]],optim_params["color_lr"]))
elif key == "fill-opacity" or key == "stroke-opacity" or key == "opacity":
if optim_params["optimize_alpha"]:
value[1].requires_grad_(True)
self.optimizers.append(OptimizableSvg.ColorOptimizer(value[1], optim_params["optimizer"],
optim_params["alpha_lr"]))
elif key == "fill-rule" or key == "stroke-width":
pass
else:
raise RuntimeError("Unrecognized appearance key '{}'".format(key))
def prop_transform(self,intform):
return intform.matmul(self.transform_optim.get_transform()) if self.transform is not None else intform
def prop_appearance(self,inappearance):
outappearance=copy.copy(inappearance)
for key,value in self.appearance.items():
if key == "fill":
#gets replaced
outappearance[key]=value
elif key == "fill-opacity":
#gets multiplied
outappearance[key] = outappearance[key]*value
elif key == "fill-rule":
#gets replaced
outappearance[key] = value
elif key =="opacity":
# gets multiplied
outappearance[key] = outappearance[key]*value
elif key == "stroke":
# gets replaced
outappearance[key] = value
elif key == "stroke-opacity":
# gets multiplied
outappearance[key] = outappearance[key]*value
elif key =="stroke-width":
# gets replaced
outappearance[key] = value
else:
raise RuntimeError("Unrecognized appearance key '{}'".format(key))
return outappearance
def zero_grad(self):
for optim in self.optimizers:
optim.zero_grad()
for child in self.children:
child.zero_grad()
def step(self):
for optim in self.optimizers:
optim.step()
for child in self.children:
child.step()
def get_type(self):
return "Generic node"
def is_shape(self):
return False
def build_scene(self,shapes,shape_groups,transform,appearance):
raise NotImplementedError("Abstract SvgNode cannot recurse")
class GroupNode(SvgNode):
def __init__(self, id, transform, appearance,settings):
super().__init__(id, transform, appearance,settings)
def get_type(self):
return "Group node"
def build_scene(self,shapes,shape_groups,transform,appearance):
outtf=self.prop_transform(transform)
outapp=self.prop_appearance(appearance)
for child in self.children:
child.build_scene(shapes,shape_groups,outtf,outapp)
def write_xml(self, parent):
elm=etree.SubElement(parent,"g")
self.write_xml_common_attrib(elm)
for child in self.children:
child.write_xml(elm)
class RootNode(SvgNode):
def __init__(self, id, transform, appearance,settings):
super().__init__(id, transform, appearance,settings)
def write_xml(self,document):
elm=etree.Element('svg')
self.write_xml_common_attrib(elm)
elm.set("version","2.0")
elm.set("width",str(document.canvas[0]))
elm.set("height", str(document.canvas[1]))
elm.set("xmlns","http://www.w3.org/2000/svg")
elm.set("xmlns:xlink","http://www.w3.org/1999/xlink")
#write definitions before we write any children
document.write_defs(elm)
#write the children
for child in self.children:
child.write_xml(elm)
return elm
def get_type(self):
return "Root node"
def build_scene(self,shapes,shape_groups,transform,appearance):
outtf = self.prop_transform(transform).to(self.device)
for child in self.children:
child.build_scene(shapes,shape_groups,outtf,appearance)
@staticmethod
def get_default_appearance(device):
default_appearance = {"fill": ("solid", torch.tensor([0., 0., 0.],device=device)),
"fill-opacity": torch.tensor([1.],device=device),
"fill-rule": "nonzero",
"opacity": torch.tensor([1.],device=device),
"stroke": ("none", None),
"stroke-opacity": torch.tensor([1.],device=device),
"stroke-width": torch.tensor([0.],device=device)}
return default_appearance
@staticmethod
def get_default_transform():
return torch.eye(3)
class ShapeNode(SvgNode):
def __init__(self, id, transform, appearance,settings):
super().__init__(id, transform, appearance,settings)
def get_type(self):
return "Generic shape node"
def is_shape(self):
return True
def construct_paint(self,value,combined_opacity,transform):
if value[0] == "none":
return None
elif value[0] == "solid":
return torch.cat([value[1],combined_opacity]).to(self.device)
elif value[0] == "url":
#get the gradient object from this node
return value[1].getGrad(combined_opacity,transform)
else:
raise ValueError("Unknown paint value type '{}'".format(value[0]))
def make_shape_group(self,appearance,transform,num_shapes,num_subobjects):
fill=self.construct_paint(appearance["fill"],appearance["opacity"]*appearance["fill-opacity"],transform)
stroke=self.construct_paint(appearance["stroke"],appearance["opacity"]*appearance["stroke-opacity"],transform)
sg = pydiffvg.ShapeGroup(shape_ids=torch.tensor(range(num_shapes, num_shapes + num_subobjects)),
fill_color=fill,
use_even_odd_rule=appearance["fill-rule"]=="evenodd",
stroke_color=stroke,
shape_to_canvas=transform,
id=self.id)
return sg
class PathNode(ShapeNode):
def __init__(self, id, transform, appearance,settings, paths):
super().__init__(id, transform, appearance,settings)
self.proc_paths(paths,settings.retrieve(self.id)[0])
def proc_paths(self,paths,optim_params):
self.paths=paths
if optim_params["paths"]["optimize_points"]:
ptlist=[]
for path in paths:
ptlist.append(path.points.requires_grad_(True))
self.optimizers.append(SvgOptimizationSettings.optims[optim_params["optimizer"]](ptlist,lr=optim_params["paths"]["shape_lr"]))
def get_type(self):
return "Path node"
def build_scene(self,shapes,shape_groups,transform,appearance):
applytf=self.prop_transform(transform)
applyapp = self.prop_appearance(appearance)
sg=self.make_shape_group(applyapp,applytf,len(shapes),len(self.paths))
for path in self.paths:
disp_path=pydiffvg.Path(path.num_control_points,path.points,path.is_closed,applyapp["stroke-width"],path.id)
shapes.append(disp_path)
shape_groups.append(sg)
def path_to_string(self,path):
path_string = "M {},{} ".format(path.points[0][0].item(), path.points[0][1].item())
idx = 1
numpoints = path.points.shape[0]
for type in path.num_control_points:
toproc = type + 1
if type == 0:
# add line
path_string += "L "
elif type == 1:
# add quadric
path_string += "Q "
elif type == 2:
# add cubic
path_string += "C "
while toproc > 0:
path_string += "{},{} ".format(path.points[idx % numpoints][0].item(),
path.points[idx % numpoints][1].item())
idx += 1
toproc -= 1
if path.is_closed:
path_string += "Z "
return path_string
def paths_string(self):
pstr=""
for path in self.paths:
pstr+=self.path_to_string(path)
return pstr
def write_xml(self, parent):
elm = etree.SubElement(parent, "path")
self.write_xml_common_attrib(elm)
elm.set("d",self.paths_string())
for child in self.children:
child.write_xml(elm)
class RectNode(ShapeNode):
def __init__(self, id, transform, appearance,settings, rect):
super().__init__(id, transform, appearance,settings)
self.rect=torch.tensor(rect,dtype=torch.float,device=settings.device)
optim_params=settings.retrieve(self.id)[0]
#borrowing path settings for this
if optim_params["paths"]["optimize_points"]:
self.optimizers.append(SvgOptimizationSettings.optims[optim_params["optimizer"]]([self.rect],lr=optim_params["paths"]["shape_lr"]))
def get_type(self):
return "Rect node"
def build_scene(self,shapes,shape_groups,transform,appearance):
applytf=self.prop_transform(transform)
applyapp = self.prop_appearance(appearance)
sg=self.make_shape_group(applyapp,applytf,len(shapes),1)
shapes.append(pydiffvg.Rect(self.rect[0:2],self.rect[0:2]+self.rect[2:4],applyapp["stroke-width"],self.id))
shape_groups.append(sg)
def write_xml(self, parent):
elm = etree.SubElement(parent, "rect")
self.write_xml_common_attrib(elm)
elm.set("x",str(self.rect[0]))
elm.set("y", str(self.rect[1]))
elm.set("width", str(self.rect[2]))
elm.set("height", str(self.rect[3]))
for child in self.children:
child.write_xml(elm)
class CircleNode(ShapeNode):
def __init__(self, id, transform, appearance,settings, rect):
super().__init__(id, transform, appearance,settings)
self.circle=torch.tensor(rect,dtype=torch.float,device=settings.device)
optim_params=settings.retrieve(self.id)[0]
#borrowing path settings for this
if optim_params["paths"]["optimize_points"]:
self.optimizers.append(SvgOptimizationSettings.optims[optim_params["optimizer"]]([self.circle],lr=optim_params["paths"]["shape_lr"]))
def get_type(self):
return "Circle node"
def build_scene(self,shapes,shape_groups,transform,appearance):
applytf=self.prop_transform(transform)
applyapp = self.prop_appearance(appearance)
sg=self.make_shape_group(applyapp,applytf,len(shapes),1)
shapes.append(pydiffvg.Circle(self.circle[2],self.circle[0:2],applyapp["stroke-width"],self.id))
shape_groups.append(sg)
def write_xml(self, parent):
elm = etree.SubElement(parent, "circle")
self.write_xml_common_attrib(elm)
elm.set("cx",str(self.circle[0]))
elm.set("cy", str(self.circle[1]))
elm.set("r", str(self.circle[2]))
for child in self.children:
child.write_xml(elm)
class EllipseNode(ShapeNode):
def __init__(self, id, transform, appearance,settings, ellipse):
super().__init__(id, transform, appearance,settings)
self.ellipse=torch.tensor(ellipse,dtype=torch.float,device=settings.device)
optim_params=settings.retrieve(self.id)[0]
#borrowing path settings for this
if optim_params["paths"]["optimize_points"]:
self.optimizers.append(SvgOptimizationSettings.optims[optim_params["optimizer"]]([self.ellipse],lr=optim_params["paths"]["shape_lr"]))
def get_type(self):
return "Ellipse node"
def build_scene(self,shapes,shape_groups,transform,appearance):
applytf=self.prop_transform(transform)
applyapp = self.prop_appearance(appearance)
sg=self.make_shape_group(applyapp,applytf,len(shapes),1)
shapes.append(pydiffvg.Ellipse(self.ellipse[2:4],self.ellipse[0:2],applyapp["stroke-width"],self.id))
shape_groups.append(sg)
def write_xml(self, parent):
elm = etree.SubElement(parent, "ellipse")
self.write_xml_common_attrib(elm)
elm.set("cx", str(self.ellipse[0]))
elm.set("cy", str(self.ellipse[1]))
elm.set("rx", str(self.ellipse[2]))
elm.set("ry", str(self.ellipse[3]))
for child in self.children:
child.write_xml(elm)
class PolygonNode(ShapeNode):
def __init__(self, id, transform, appearance,settings, points):
super().__init__(id, transform, appearance,settings)
self.points=points
optim_params=settings.retrieve(self.id)[0]
#borrowing path settings for this
if optim_params["paths"]["optimize_points"]:
self.optimizers.append(SvgOptimizationSettings.optims[optim_params["optimizer"]]([self.points],lr=optim_params["paths"]["shape_lr"]))
def get_type(self):
return "Polygon node"
def build_scene(self,shapes,shape_groups,transform,appearance):
applytf=self.prop_transform(transform)
applyapp = self.prop_appearance(appearance)
sg=self.make_shape_group(applyapp,applytf,len(shapes),1)
shapes.append(pydiffvg.Polygon(self.points,True,applyapp["stroke-width"],self.id))
shape_groups.append(sg)
def point_string(self):
ret=""
for i in range(self.points.shape[0]):
pt=self.points[i,:]
#assert pt.shape == (1,2)
ret+= str(pt[0])+","+str(pt[1])+" "
return ret
def write_xml(self, parent):
elm = etree.SubElement(parent, "polygon")
self.write_xml_common_attrib(elm)
elm.set("points",self.point_string())
for child in self.children:
child.write_xml(elm)
class GradientNode(SvgNode):
def __init__(self, id, transform,settings,begin,end,offsets,stops,href):
super().__init__(id, transform, {},settings)
self.optim=OptimizableSvg.GradientOptimizer(begin, end, offsets, stops, settings.retrieve(id)[0])
self.optimizers.append(self.optim)
self.href=href
def is_ref(self):
return self.href is not None
def get_type(self):
return "Gradient node"
def get_stops(self):
_, _, offsets, stops=self.optim.get_vals()
return offsets, stops
def get_points(self):
begin, end, _, _ =self.optim.get_vals()
return begin, end
def write_xml(self, parent):
elm = etree.SubElement(parent, "linearGradient")
self.write_xml_common_attrib(elm,tfname="gradientTransform")
begin, end, offsets, stops = self.optim.get_vals()
if self.href is None:
#we have stops
for idx, offset in enumerate(offsets):
stop=etree.SubElement(elm,"stop")
stop.set("offset",str(offset.item()))
stop.set("stop-color",OptimizableSvg.rgb_to_string(stops[idx,0:3]))
stop.set("stop-opacity",str(stops[idx,3].item()))
else:
elm.set('xlink:href', "#{}".format(self.href.id))
if begin is not None and end is not None:
#no stops
elm.set('x1', str(begin[0].item()))
elm.set('y1', str(begin[1].item()))
elm.set('x2', str(end[0].item()))
elm.set('y2', str(end[1].item()))
# magic value to make this work
elm.set("gradientUnits", "userSpaceOnUse")
for child in self.children:
child.write_xml(elm)
def getGrad(self,combined_opacity,transform):
if self.is_ref():
offsets, stops=self.href.get_stops()
else:
offsets, stops=self.get_stops()
stops=stops.clone()
stops[:,3]*=combined_opacity
begin,end = self.get_points()
applytf=self.prop_transform(transform)
begin=OptimizableSvg.TransformTools.transformPoints(begin.unsqueeze(0),applytf).squeeze()
end = OptimizableSvg.TransformTools.transformPoints(end.unsqueeze(0), applytf).squeeze()
return pydiffvg.LinearGradient(begin, end, offsets, stops)
#endregion
def __init__(self, filename, settings=SvgOptimizationSettings(),optimize_background=False, verbose=False, device=torch.device("cpu")):
self.settings=settings
self.verbose=verbose
self.device=device
self.settings.device=device
tree = etree.parse(filename)
root = tree.getroot()
#in case we need global optimization
self.optimizers=[]
self.background=torch.tensor([1.,1.,1.],dtype=torch.float32,requires_grad=optimize_background,device=self.device)
if optimize_background:
p=settings.retrieve("default")[0]
self.optimizers.append(OptimizableSvg.ColorOptimizer(self.background,SvgOptimizationSettings.optims[p["optimizer"]],p["color_lr"]))
self.defs={}
self.depth=0
self.dirty=True
self.scene=None
self.parseRoot(root)
recognised_shapes=["path","circle","rect","ellipse","polygon"]
#region core functionality
def build_scene(self):
if self.dirty:
shape_groups=[]
shapes=[]
self.root.build_scene(shapes,shape_groups,OptimizableSvg.RootNode.get_default_transform().to(self.device),OptimizableSvg.RootNode.get_default_appearance(self.device))
self.scene=(self.canvas[0],self.canvas[1],shapes,shape_groups)
self.dirty=False
return self.scene
def zero_grad(self):
self.root.zero_grad()
for optim in self.optimizers:
optim.zero_grad()
for item in self.defs.values():
if issubclass(item.__class__,OptimizableSvg.SvgNode):
item.zero_grad()
def render(self,scale=None,seed=0):
#render at native resolution
scene = self.build_scene()
scene_args = pydiffvg.RenderFunction.serialize_scene(*scene)
render = pydiffvg.RenderFunction.apply
out_size=(scene[0],scene[1]) if scale is None else (int(scene[0]*scale),int(scene[1]*scale))
img = render(out_size[0], # width
out_size[1], # height
2, # num_samples_x
2, # num_samples_y
seed, # seed
None, # background_image
*scene_args)
return img
def step(self):
self.dirty=True
self.root.step()
for optim in self.optimizers:
optim.step()
for item in self.defs.values():
if issubclass(item.__class__, OptimizableSvg.SvgNode):
item.step()
#endregion
#region reporting
def offset_str(self,s):
return ("\t"*self.depth)+s
def reportSkippedAttribs(self, node, non_skipped=[]):
skipped=set([k for k in node.attrib.keys() if not OptimizableSvg.is_namespace(k)])-set(non_skipped)
if len(skipped)>0:
tag=OptimizableSvg.remove_namespace(node.tag) if "id" not in node.attrib else "{}#{}".format(OptimizableSvg.remove_namespace(node.tag),node.attrib["id"])
print(self.offset_str("Warning: Skipping the following attributes of node '{}': {}".format(tag,", ".join(["'{}'".format(atr) for atr in skipped]))))
def reportSkippedChildren(self,node,skipped):
skipped_names=["{}#{}".format(elm.tag,elm.attrib["id"]) if "id" in elm.attrib else elm.tag for elm in skipped]
if len(skipped)>0:
tag = OptimizableSvg.remove_namespace(node.tag) if "id" not in node.attrib else "{}#{}".format(OptimizableSvg.remove_namespace(node.tag),
node.attrib["id"])
print(self.offset_str("Warning: Skipping the following children of node '{}': {}".format(tag,", ".join(["'{}'".format(name) for name in skipped_names]))))
#endregion
#region parsing
@staticmethod
def remove_namespace(s):
"""
{...} ... -> ...
"""
return re.sub('{.*}', '', s)
@staticmethod
def is_namespace(s):
return re.match('{.*}', s) is not None
@staticmethod
def parseTransform(node):
if "transform" not in node.attrib and "gradientTransform" not in node.attrib:
return None
tf_string=node.attrib["transform"] if "transform" in node.attrib else node.attrib["gradientTransform"]
tforms=tf_string.split(")")[:-1]
mat=np.eye(3)
for tform in tforms:
type = tform.split("(")[0]
args = [float(val) for val in re.split("[, ]+",tform.split("(")[1])]
if type == "matrix":
mat=mat @ OptimizableSvg.TransformTools.parse_matrix(args)
elif type == "translate":
mat = mat @ OptimizableSvg.TransformTools.parse_translate(args)
elif type == "rotate":
mat = mat @ OptimizableSvg.TransformTools.parse_rotate(args)
elif type == "scale":
mat = mat @ OptimizableSvg.TransformTools.parse_scale(args)
elif type == "skewX":
mat = mat @ OptimizableSvg.TransformTools.parse_skewx(args)
elif type == "skewY":
mat = mat @ OptimizableSvg.TransformTools.parse_skewy(args)
else:
raise ValueError("Unknown transform type '{}'".format(type))
return mat
#dictionary that defines what constant do we need to multiply different units to get the value in pixels
#gleaned from the CSS definition
unit_dict = {"px":1,
"mm":4,
"cm":40,
"in":25.4*4,
"pt":25.4*4/72,
"pc":25.4*4/6
}
@staticmethod
def parseLength(s):
#length is a number followed possibly by a unit definition
#we assume that default unit is the pixel (px) equal to 0.25mm
#last two characters might be unit
val=None
for i in range(len(s)):
try:
val=float(s[:len(s)-i])
unit=s[len(s)-i:]
break
except ValueError:
continue
if len(unit)>0 and unit not in OptimizableSvg.unit_dict:
raise ValueError("Unknown or unsupported unit '{}' encountered while parsing".format(unit))
if unit != "":
val*=OptimizableSvg.unit_dict[unit]
return val
@staticmethod
def parseOpacity(s):
is_percent=s.endswith("%")
s=s.rstrip("%")
val=float(s)
if is_percent:
val=val/100
return np.clip(val,0.,1.)
@staticmethod
def parse_color(s):
"""
Hex to tuple
"""
if s[0] != '#':
raise ValueError("Color argument `{}` not supported".format(s))
s = s.lstrip('#')
if len(s)==6:
rgb = tuple(int(s[i:i + 2], 16) for i in (0, 2, 4))
return torch.tensor([rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0])
elif len(s)==3:
rgb = tuple((int(s[i:i + 1], 16)) for i in (0, 1, 2))
return torch.tensor([rgb[0] / 15.0, rgb[1] / 15.0, rgb[2] / 15.0])
else:
raise ValueError("Color argument `{}` not supported".format(s))
# sRGB to RGB
# return torch.pow(torch.tensor([rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0]), 2.2)
@staticmethod
def rgb_to_string(val):
byte_rgb=(val.clone().detach()*255).type(torch.int)
byte_rgb.clamp_(min=0,max=255)
s="#{:02x}{:02x}{:02x}".format(*byte_rgb)
return s
#parses a "paint" string for use in fill and stroke definitions
@staticmethod
def parsePaint(paintStr,defs,device):
paintStr=paintStr.strip()
if paintStr=="none":
return ("none", None)
elif paintStr[0]=="#":
return ("solid",OptimizableSvg.parse_color(paintStr).to(device))
elif paintStr.startswith("url"):
url=paintStr.lstrip("url(").rstrip(")").strip("\'\"").lstrip("#")
if url not in defs:
raise ValueError("Paint-type attribute referencing an unknown object with ID '#{}'".format(url))
return ("url",defs[url])
else:
raise ValueError("Unrecognized paint string: '{}'".format(paintStr))
appearance_keys=["fill","fill-opacity","fill-rule","opacity","stroke","stroke-opacity","stroke-width"]
@staticmethod
def parseAppearance(node, defs, device):
ret={}
parse_keys = OptimizableSvg.appearance_keys
local_dict={key:value for key,value in node.attrib.items() if key in parse_keys}
css_dict={}
style_dict={}
appearance_dict={}
if "class" in node.attrib:
cls=node.attrib["class"]
if "."+cls in defs:
css_string=defs["."+cls]
css_dict={item.split(":")[0]:item.split(":")[1] for item in css_string.split(";") if len(item)>0 and item.split(":")[0] in parse_keys}
if "style" in node.attrib:
style_string=node.attrib["style"]
style_dict={item.split(":")[0]:item.split(":")[1] for item in style_string.split(";") if len(item)>0 and item.split(":")[0] in parse_keys}
appearance_dict.update(css_dict)
appearance_dict.update(style_dict)
appearance_dict.update(local_dict)
for key,value in appearance_dict.items():
if key=="fill":
ret[key]=OptimizableSvg.parsePaint(value,defs,device)
elif key == "fill-opacity":
ret[key]=torch.tensor(OptimizableSvg.parseOpacity(value),device=device)
elif key == "fill-rule":
ret[key]=value
elif key == "opacity":
ret[key]=torch.tensor(OptimizableSvg.parseOpacity(value),device=device)
elif key == "stroke":
ret[key]=OptimizableSvg.parsePaint(value,defs,device)
elif key == "stroke-opacity":
ret[key]=torch.tensor(OptimizableSvg.parseOpacity(value),device=device)
elif key == "stroke-width":
ret[key]=torch.tensor(OptimizableSvg.parseLength(value),device=device)
else:
raise ValueError("Error while parsing appearance attributes: key '{}' should not be here".format(key))
return ret
def parseRoot(self,root):
if self.verbose:
print(self.offset_str("Parsing root"))
self.depth += 1
# get document canvas dimensions
self.parseViewport(root)
canvmax=np.max(self.canvas)
self.settings.global_override(["transforms","translation_mult"],canvmax)
id=root.attrib["id"] if "id" in root.attrib else None
transform=OptimizableSvg.parseTransform(root)
appearance=OptimizableSvg.parseAppearance(root,self.defs,self.device)
version=root.attrib["version"] if "version" in root.attrib else "<unknown version>"
if version != "2.0":
print(self.offset_str("Warning: Version {} is not 2.0, strange things may happen".format(version)))
self.root=OptimizableSvg.RootNode(id,transform,appearance,self.settings)
if self.verbose:
self.reportSkippedAttribs(root, ["width", "height", "id", "transform","version", "style"]+OptimizableSvg.appearance_keys)
#go through the root children and parse them appropriately
skipped=[]
for child in root:
if OptimizableSvg.remove_namespace(child.tag) in OptimizableSvg.recognised_shapes:
self.parseShape(child,self.root)
elif OptimizableSvg.remove_namespace(child.tag) == "defs":
self.parseDefs(child)
elif OptimizableSvg.remove_namespace(child.tag) == "style":
self.parseStyle(child)
elif OptimizableSvg.remove_namespace(child.tag) == "g":
self.parseGroup(child,self.root)
else:
skipped.append(child)
if self.verbose:
self.reportSkippedChildren(root,skipped)
self.depth-=1
def parseShape(self,shape,parent):
tag=OptimizableSvg.remove_namespace(shape.tag)
if self.verbose:
print(self.offset_str("Parsing {}#{}".format(tag,shape.attrib["id"] if "id" in shape.attrib else "<No ID>")))
self.depth+=1
if tag == "path":
self.parsePath(shape,parent)
elif tag == "circle":
self.parseCircle(shape,parent)
elif tag == "rect":
self.parseRect(shape,parent)
elif tag == "ellipse":
self.parseEllipse(shape,parent)
elif tag == "polygon":
self.parsePolygon(shape,parent)
else:
raise ValueError("Encountered unknown shape type '{}'".format(tag))
self.depth -= 1
def parsePath(self,shape,parent):
path_string=shape.attrib['d']
name = ''
if 'id' in shape.attrib:
name = shape.attrib['id']
paths = pydiffvg.from_svg_path(path_string)
for idx, path in enumerate(paths):
path.stroke_width = torch.tensor([0.],device=self.device)
path.num_control_points=path.num_control_points.to(self.device)
path.points=path.points.to(self.device)
path.source_id = name
path.id = "{}-{}".format(name,idx) if len(paths)>1 else name
transform = OptimizableSvg.parseTransform(shape)
appearance = OptimizableSvg.parseAppearance(shape,self.defs,self.device)
node=OptimizableSvg.PathNode(name,transform,appearance,self.settings,paths)
parent.children.append(node)
if self.verbose:
self.reportSkippedAttribs(shape, ["id","d","transform","style"]+OptimizableSvg.appearance_keys)
self.reportSkippedChildren(shape,list(shape))
def parseEllipse(self, shape, parent):
cx = float(shape.attrib["cx"]) if "cx" in shape.attrib else 0.
cy = float(shape.attrib["cy"]) if "cy" in shape.attrib else 0.
rx = float(shape.attrib["rx"])
ry = float(shape.attrib["ry"])
name = ''
if 'id' in shape.attrib:
name = shape.attrib['id']
transform = OptimizableSvg.parseTransform(shape)
appearance = OptimizableSvg.parseAppearance(shape, self.defs, self.device)
node = OptimizableSvg.EllipseNode(name, transform, appearance, self.settings, (cx, cy, rx, ry))
parent.children.append(node)
if self.verbose:
self.reportSkippedAttribs(shape, ["id", "x", "y", "r", "transform",
"style"] + OptimizableSvg.appearance_keys)
self.reportSkippedChildren(shape, list(shape))
def parsePolygon(self, shape, parent):
points_string = shape.attrib['points']
name = ''
points=[]
for point_string in points_string.split(" "):
if len(point_string) == 0:
continue
coord_strings=point_string.split(",")
assert len(coord_strings)==2
points.append([float(coord_strings[0]),float(coord_strings[1])])
points=torch.tensor(points,dtype=torch.float,device=self.device)
if 'id' in shape.attrib:
name = shape.attrib['id']
transform = OptimizableSvg.parseTransform(shape)
appearance = OptimizableSvg.parseAppearance(shape, self.defs, self.device)
node = OptimizableSvg.PolygonNode(name, transform, appearance, self.settings, points)
parent.children.append(node)
if self.verbose:
self.reportSkippedAttribs(shape, ["id", "points", "transform", "style"] + OptimizableSvg.appearance_keys)
self.reportSkippedChildren(shape, list(shape))
def parseCircle(self,shape,parent):
cx = float(shape.attrib["cx"]) if "cx" in shape.attrib else 0.
cy = float(shape.attrib["cy"]) if "cy" in shape.attrib else 0.
r = float(shape.attrib["r"])
name = ''
if 'id' in shape.attrib:
name = shape.attrib['id']
transform = OptimizableSvg.parseTransform(shape)
appearance = OptimizableSvg.parseAppearance(shape, self.defs, self.device)
node = OptimizableSvg.CircleNode(name, transform, appearance, self.settings, (cx, cy, r))
parent.children.append(node)
if self.verbose:
self.reportSkippedAttribs(shape, ["id", "x", "y", "r", "transform",
"style"] + OptimizableSvg.appearance_keys)
self.reportSkippedChildren(shape, list(shape))
def parseRect(self,shape,parent):
x = float(shape.attrib["x"]) if "x" in shape.attrib else 0.
y = float(shape.attrib["y"]) if "y" in shape.attrib else 0.
width = float(shape.attrib["width"])
height = float(shape.attrib["height"])
name = ''
if 'id' in shape.attrib:
name = shape.attrib['id']
transform = OptimizableSvg.parseTransform(shape)
appearance = OptimizableSvg.parseAppearance(shape, self.defs, self.device)
node = OptimizableSvg.RectNode(name, transform, appearance, self.settings, (x,y,width,height))
parent.children.append(node)
if self.verbose:
self.reportSkippedAttribs(shape, ["id", "x", "y", "width", "height", "transform", "style"] + OptimizableSvg.appearance_keys)
self.reportSkippedChildren(shape, list(shape))
def parseGroup(self,group,parent):
tag = OptimizableSvg.remove_namespace(group.tag)
id = group.attrib["id"] if "id" in group.attrib else "<No ID>"
if self.verbose:
print(self.offset_str("Parsing {}#{}".format(tag, id)))
self.depth+=1
transform=self.parseTransform(group)
#todo process more attributes
appearance=OptimizableSvg.parseAppearance(group,self.defs,self.device)
node=OptimizableSvg.GroupNode(id,transform,appearance,self.settings)
parent.children.append(node)
if self.verbose:
self.reportSkippedAttribs(group,["id","transform","style"]+OptimizableSvg.appearance_keys)
skipped_children=[]
for child in group:
if OptimizableSvg.remove_namespace(child.tag) in OptimizableSvg.recognised_shapes:
self.parseShape(child,node)
elif OptimizableSvg.remove_namespace(child.tag) == "defs":
self.parseDefs(child)
elif OptimizableSvg.remove_namespace(child.tag) == "style":
self.parseStyle(child)
elif OptimizableSvg.remove_namespace(child.tag) == "g":
self.parseGroup(child,node)
else:
skipped_children.append(child)
if self.verbose:
self.reportSkippedChildren(group,skipped_children)
self.depth-=1
def parseStyle(self,style_node):
tag = OptimizableSvg.remove_namespace(style_node.tag)
id = style_node.attrib["id"] if "id" in style_node.attrib else "<No ID>"
if self.verbose:
print(self.offset_str("Parsing {}#{}".format(tag, id)))
if style_node.attrib["type"] != "text/css":
raise ValueError("Only text/css style recognized, got {}".format(style_node.attrib["type"]))
self.depth += 1
# creating only a dummy node
node = OptimizableSvg.SvgNode(id, None, {}, self.settings)
if self.verbose:
self.reportSkippedAttribs(def_node, ["id"])
if len(style_node)>0:
raise ValueError("Style node should not have children (has {})".format(len(style_node)))
# collect CSS classes
sheet = cssutils.parseString(style_node.text)
for rule in sheet:
if hasattr(rule, 'selectorText') and hasattr(rule, 'style'):
name = rule.selectorText
if len(name) >= 2 and name[0] == '.':
self.defs[name] = rule.style.getCssText().replace("\n","")
else:
raise ValueError("Unrecognized CSS selector {}".format(name))
else:
raise ValueError("No style or selector text in CSS rule")
if self.verbose:
self.reportSkippedChildren(def_node, skipped_children)
self.depth -= 1
def parseDefs(self,def_node):
#only linear gradients are currently supported
tag = OptimizableSvg.remove_namespace(def_node.tag)
id = def_node.attrib["id"] if "id" in def_node.attrib else "<No ID>"
if self.verbose:
print(self.offset_str("Parsing {}#{}".format(tag, id)))
self.depth += 1
# creating only a dummy node
node = OptimizableSvg.SvgNode(id, None, {},self.settings)
if self.verbose:
self.reportSkippedAttribs(def_node, ["id"])
skipped_children = []
for child in def_node:
if OptimizableSvg.remove_namespace(child.tag) == "linearGradient":
self.parseGradient(child,node)
elif OptimizableSvg.remove_namespace(child.tag) in OptimizableSvg.recognised_shapes:
raise NotImplementedError("Definition/instantiation of shapes not supported")
elif OptimizableSvg.remove_namespace(child.tag) == "defs":
raise NotImplementedError("Definition within definition not supported")
elif OptimizableSvg.remove_namespace(child.tag) == "g":
raise NotImplementedError("Groups within definition not supported")
else:
skipped_children.append(child)
if len(node.children)>0:
#take this node out and enter it into defs
self.defs[node.children[0].id]=node.children[0]
node.children.pop()
if self.verbose:
self.reportSkippedChildren(def_node, skipped_children)
self.depth -= 1
def parseGradientStop(self,stop):
param_dict={key:value for key,value in stop.attrib.items() if key in ["id","offset","stop-color","stop-opacity"]}
style_dict={}
if "style" in stop.attrib:
style_dict={item.split(":")[0]:item.split(":")[1] for item in stop.attrib["style"].split(";") if len(item)>0}
param_dict.update(style_dict)
offset=OptimizableSvg.parseOpacity(param_dict["offset"])
color=OptimizableSvg.parse_color(param_dict["stop-color"])
opacity=OptimizableSvg.parseOpacity(param_dict["stop-opacity"]) if "stop-opacity" in param_dict else 1.
return offset, color, opacity
def parseGradient(self, gradient_node, parent):
tag = OptimizableSvg.remove_namespace(gradient_node.tag)
id = gradient_node.attrib["id"] if "id" in gradient_node.attrib else "<No ID>"
if self.verbose:
print(self.offset_str("Parsing {}#{}".format(tag, id)))
self.depth += 1
if "stop" not in [OptimizableSvg.remove_namespace(child.tag) for child in gradient_node]\
and "href" not in [OptimizableSvg.remove_namespace(key) for key in gradient_node.attrib.keys()]:
raise ValueError("Gradient {} has neither stops nor a href link to them".format(id))
transform=self.parseTransform(gradient_node)
begin=None
end = None
offsets=[]
stops=[]
href=None
if "x1" in gradient_node.attrib or "y1" in gradient_node.attrib:
begin=np.array([0.,0.])
if "x1" in gradient_node.attrib:
begin[0] = float(gradient_node.attrib["x1"])
if "y1" in gradient_node.attrib:
begin[1] = float(gradient_node.attrib["y1"])
begin = torch.tensor(begin.transpose(),dtype=torch.float32)
if "x2" in gradient_node.attrib or "y2" in gradient_node.attrib:
end=np.array([0.,0.])
if "x2" in gradient_node.attrib:
end[0] = float(gradient_node.attrib["x2"])
if "y2" in gradient_node.attrib:
end[1] = float(gradient_node.attrib["y2"])
end=torch.tensor(end.transpose(),dtype=torch.float32)
stop_nodes=[node for node in list(gradient_node) if OptimizableSvg.remove_namespace(node.tag)=="stop"]
if len(stop_nodes)>0:
stop_nodes=sorted(stop_nodes,key=lambda n: float(n.attrib["offset"]))
for stop in stop_nodes:
offset, color, opacity = self.parseGradientStop(stop)
offsets.append(offset)
stops.append(np.concatenate((color,np.array([opacity]))))
hkey=next((value for key,value in gradient_node.attrib.items() if OptimizableSvg.remove_namespace(key)=="href"),None)
if hkey is not None:
href=self.defs[hkey.lstrip("#")]
parent.children.append(OptimizableSvg.GradientNode(id,transform,self.settings,begin.to(self.device) if begin is not None else begin,end.to(self.device) if end is not None else end,torch.tensor(offsets,dtype=torch.float32,device=self.device) if len(offsets)>0 else None,torch.tensor(np.array(stops),dtype=torch.float32,device=self.device) if len(stops)>0 else None,href))
self.depth -= 1
def parseViewport(self, root):
if "width" in root.attrib and "height" in root.attrib:
self.canvas = np.array([int(math.ceil(float(root.attrib["width"]))), int(math.ceil(float(root.attrib["height"])))])
elif "viewBox" in root.attrib:
s=root.attrib["viewBox"].split(" ")
w=s[2]
h=s[3]
self.canvas = np.array(
[int(math.ceil(float(w))), int(math.ceil(float(h)))])
else:
raise ValueError("Size information is missing from document definition")
#endregion
#region writing
def write_xml(self):
tree=self.root.write_xml(self)
return minidom.parseString(etree.tostring(tree, 'utf-8')).toprettyxml(indent=" ")
def write_defs(self,root):
if len(self.defs)==0:
return
defnode = etree.SubElement(root, 'defs')
stylenode = etree.SubElement(root,'style')
stylenode.set('type','text/css')
stylenode.text=""
defcpy=copy.copy(self.defs)
while len(defcpy)>0:
torem=[]
for key,value in defcpy.items():
if issubclass(value.__class__,OptimizableSvg.SvgNode):
if value.href is None or value.href not in defcpy:
value.write_xml(defnode)
torem.append(key)
else:
continue
else:
#this is a string, and hence a CSS attribute
stylenode.text+=key+" {"+value+"}\n"
torem.append(key)
for key in torem:
del defcpy[key]
#endregion
|