File size: 24,996 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * The cub::WarpReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp.
 */

#pragma once

#include "../config.cuh"
#include "specializations/warp_reduce_shfl.cuh"
#include "specializations/warp_reduce_smem.cuh"
#include "../thread/thread_operators.cuh"
#include "../util_type.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/**
 * \addtogroup WarpModule
 * @{
 */

/**
 * \brief The WarpReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp. ![](warp_reduce_logo.png)
 *
 * \tparam T                        The reduction input/output element type
 * \tparam LOGICAL_WARP_THREADS     <b>[optional]</b> The number of threads per "logical" warp (may be less than the number of hardware warp threads).  Default is the warp size of the targeted CUDA compute-capability (e.g., 32 threads for SM20).
 * \tparam PTX_ARCH                 <b>[optional]</b> \ptxversion
 *
 * \par Overview
 * - A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>)
 *   uses a binary combining operator to compute a single aggregate from a list of input elements.
 * - Supports "logical" warps smaller than the physical warp size (e.g., logical warps of 8 threads)
 * - The number of entrant threads must be an multiple of \p LOGICAL_WARP_THREADS
 *
 * \par Performance Considerations
 * - Uses special instructions when applicable (e.g., warp \p SHFL instructions)
 * - Uses synchronization-free communication between warp lanes when applicable
 * - Incurs zero bank conflicts for most types
 * - Computation is slightly more efficient (i.e., having lower instruction overhead) for:
 *     - Summation (<b><em>vs.</em></b> generic reduction)
 *     - The architecture's warp size is a whole multiple of \p LOGICAL_WARP_THREADS
 *
 * \par Simple Examples
 * \warpcollective{WarpReduce}
 * \par
 * The code snippet below illustrates four concurrent warp sum reductions within a block of
 * 128 threads (one per each of the 32-thread warps).
 * \par
 * \code
 * #include <cub/cub.cuh>
 *
 * __global__ void ExampleKernel(...)
 * {
 *     // Specialize WarpReduce for type int
 *     typedef cub::WarpReduce<int> WarpReduce;
 *
 *     // Allocate WarpReduce shared memory for 4 warps
 *     __shared__ typename WarpReduce::TempStorage temp_storage[4];
 *
 *     // Obtain one input item per thread
 *     int thread_data = ...
 *
 *     // Return the warp-wide sums to each lane0 (threads 0, 32, 64, and 96)
 *     int warp_id = threadIdx.x / 32;
 *     int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data);
 *
 * \endcode
 * \par
 * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
 * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520,
 * \p 2544, and \p 3568, respectively (and is undefined in other threads).
 *
 * \par
 * The code snippet below illustrates a single warp sum reduction within a block of
 * 128 threads.
 * \par
 * \code
 * #include <cub/cub.cuh>
 *
 * __global__ void ExampleKernel(...)
 * {
 *     // Specialize WarpReduce for type int
 *     typedef cub::WarpReduce<int> WarpReduce;
 *
 *     // Allocate WarpReduce shared memory for one warp
 *     __shared__ typename WarpReduce::TempStorage temp_storage;
 *     ...
 *
 *     // Only the first warp performs a reduction
 *     if (threadIdx.x < 32)
 *     {
 *         // Obtain one input item per thread
 *         int thread_data = ...
 *
 *         // Return the warp-wide sum to lane0
 *         int aggregate = WarpReduce(temp_storage).Sum(thread_data);
 *
 * \endcode
 * \par
 * Suppose the set of input \p thread_data across the warp of threads is <tt>{0, 1, 2, 3, ..., 31}</tt>.
 * The corresponding output \p aggregate in thread0 will be \p 496 (and is undefined in other threads).
 *
 */
template <
    typename    T,
    int         LOGICAL_WARP_THREADS    = CUB_PTX_WARP_THREADS,
    int         PTX_ARCH                = CUB_PTX_ARCH>
class WarpReduce
{
private:

    /******************************************************************************
     * Constants and type definitions
     ******************************************************************************/

    enum
    {
        /// Whether the logical warp size and the PTX warp size coincide
        IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(PTX_ARCH)),

        /// Whether the logical warp size is a power-of-two
        IS_POW_OF_TWO = PowerOfTwo<LOGICAL_WARP_THREADS>::VALUE,
    };

public:

    #ifndef DOXYGEN_SHOULD_SKIP_THIS    // Do not document

    /// Internal specialization.  Use SHFL-based reduction if (architecture is >= SM30) and (LOGICAL_WARP_THREADS is a power-of-two)
    typedef typename If<(PTX_ARCH >= 300) && (IS_POW_OF_TWO),
        WarpReduceShfl<T, LOGICAL_WARP_THREADS, PTX_ARCH>,
        WarpReduceSmem<T, LOGICAL_WARP_THREADS, PTX_ARCH> >::Type InternalWarpReduce;

    #endif // DOXYGEN_SHOULD_SKIP_THIS


private:

    /// Shared memory storage layout type for WarpReduce
    typedef typename InternalWarpReduce::TempStorage _TempStorage;


    /******************************************************************************
     * Thread fields
     ******************************************************************************/

    /// Shared storage reference
    _TempStorage &temp_storage;


    /******************************************************************************
     * Utility methods
     ******************************************************************************/

public:

    /// \smemstorage{WarpReduce}
    struct TempStorage : Uninitialized<_TempStorage> {};


    /******************************************************************//**
     * \name Collective constructors
     *********************************************************************/
    //@{


    /**
     * \brief Collective constructor using the specified memory allocation as temporary storage.  Logical warp and lane identifiers are constructed from <tt>threadIdx.x</tt>.
     */
    __device__ __forceinline__ WarpReduce(
        TempStorage &temp_storage)             ///< [in] Reference to memory allocation having layout type TempStorage
    :
        temp_storage(temp_storage.Alias())
    {}


    //@}  end member group
    /******************************************************************//**
     * \name Summation reductions
     *********************************************************************/
    //@{


    /**
     * \brief Computes a warp-wide sum in the calling warp.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates four concurrent warp sum reductions within a block of
     * 128 threads (one per each of the 32-thread warps).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for 4 warps
     *     __shared__ typename WarpReduce::TempStorage temp_storage[4];
     *
     *     // Obtain one input item per thread
     *     int thread_data = ...
     *
     *     // Return the warp-wide sums to each lane0
     *     int warp_id = threadIdx.x / 32;
     *     int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data);
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
     * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520,
     * \p 2544, and \p 3568, respectively (and is undefined in other threads).
     *
     */
    __device__ __forceinline__ T Sum(
        T                   input)              ///< [in] Calling thread's input
    {
        return InternalWarpReduce(temp_storage).template Reduce<true>(input, LOGICAL_WARP_THREADS, cub::Sum());
    }

    /**
     * \brief Computes a partially-full warp-wide sum in the calling warp.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * All threads across the calling warp must agree on the same value for \p valid_items.  Otherwise the result is undefined.
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a sum reduction within a single, partially-full
     * block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(int *d_data, int valid_items)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item per thread if in range
     *     int thread_data;
     *     if (threadIdx.x < valid_items)
     *         thread_data = d_data[threadIdx.x];
     *
     *     // Return the warp-wide sums to each lane0
     *     int aggregate = WarpReduce(temp_storage).Sum(
     *         thread_data, valid_items);
     *
     * \endcode
     * \par
     * Suppose the input \p d_data is <tt>{0, 1, 2, 3, 4, ...</tt> and \p valid_items
     * is \p 4.  The corresponding output \p aggregate in thread0 is \p 6 (and is
     * undefined in other threads).
     *
     */
    __device__ __forceinline__ T Sum(
        T                   input,              ///< [in] Calling thread's input
        int                 valid_items)        ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS)
    {
        // Determine if we don't need bounds checking
        return InternalWarpReduce(temp_storage).template Reduce<false>(input, valid_items, cub::Sum());
    }


    /**
     * \brief Computes a segmented sum in the calling warp where segments are defined by head-flags.  The sum of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a head-segmented warp sum
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int head_flag = ...
     *
     *     // Return the warp-wide sums to each lane0
     *     int aggregate = WarpReduce(temp_storage).HeadSegmentedSum(
     *         thread_data, head_flag);
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p head_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 6, \p 22, \p 38, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     *
     */
    template <
        typename            FlagT>
    __device__ __forceinline__ T HeadSegmentedSum(
        T                   input,              ///< [in] Calling thread's input
        FlagT                head_flag)          ///< [in] Head flag denoting whether or not \p input is the start of a new segment
    {
        return HeadSegmentedReduce(input, head_flag, cub::Sum());
    }


    /**
     * \brief Computes a segmented sum in the calling warp where segments are defined by tail-flags.  The sum of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a tail-segmented warp sum
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int tail_flag = ...
     *
     *     // Return the warp-wide sums to each lane0
     *     int aggregate = WarpReduce(temp_storage).TailSegmentedSum(
     *         thread_data, tail_flag);
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p tail_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 6, \p 22, \p 38, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename            FlagT>
    __device__ __forceinline__ T TailSegmentedSum(
        T                   input,              ///< [in] Calling thread's input
        FlagT                tail_flag)          ///< [in] Head flag denoting whether or not \p input is the start of a new segment
    {
        return TailSegmentedReduce(input, tail_flag, cub::Sum());
    }



    //@}  end member group
    /******************************************************************//**
     * \name Generic reductions
     *********************************************************************/
    //@{

    /**
     * \brief Computes a warp-wide reduction in the calling warp using the specified binary reduction functor.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates four concurrent warp max reductions within a block of
     * 128 threads (one per each of the 32-thread warps).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for 4 warps
     *     __shared__ typename WarpReduce::TempStorage temp_storage[4];
     *
     *     // Obtain one input item per thread
     *     int thread_data = ...
     *
     *     // Return the warp-wide reductions to each lane0
     *     int warp_id = threadIdx.x / 32;
     *     int aggregate = WarpReduce(temp_storage[warp_id]).Reduce(
     *         thread_data, cub::Max());
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
     * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 31, \p 63,
     * \p 95, and \p 127, respectively  (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <typename ReductionOp>
    __device__ __forceinline__ T Reduce(
        T                   input,              ///< [in] Calling thread's input
        ReductionOp         reduction_op)       ///< [in] Binary reduction operator
    {
        return InternalWarpReduce(temp_storage).template Reduce<true>(input, LOGICAL_WARP_THREADS, reduction_op);
    }

    /**
     * \brief Computes a partially-full warp-wide reduction in the calling warp using the specified binary reduction functor.  The output is valid in warp <em>lane</em><sub>0</sub>.
     *
     * All threads across the calling warp must agree on the same value for \p valid_items.  Otherwise the result is undefined.
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a max reduction within a single, partially-full
     * block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(int *d_data, int valid_items)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item per thread if in range
     *     int thread_data;
     *     if (threadIdx.x < valid_items)
     *         thread_data = d_data[threadIdx.x];
     *
     *     // Return the warp-wide reductions to each lane0
     *     int aggregate = WarpReduce(temp_storage).Reduce(
     *         thread_data, cub::Max(), valid_items);
     *
     * \endcode
     * \par
     * Suppose the input \p d_data is <tt>{0, 1, 2, 3, 4, ...</tt> and \p valid_items
     * is \p 4.  The corresponding output \p aggregate in thread0 is \p 3 (and is
     * undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <typename ReductionOp>
    __device__ __forceinline__ T Reduce(
        T                   input,              ///< [in] Calling thread's input
        ReductionOp         reduction_op,       ///< [in] Binary reduction operator
        int                 valid_items)        ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS)
    {
        return InternalWarpReduce(temp_storage).template Reduce<false>(input, valid_items, reduction_op);
    }


    /**
     * \brief Computes a segmented reduction in the calling warp where segments are defined by head-flags.  The reduction of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a head-segmented warp max
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int head_flag = ...
     *
     *     // Return the warp-wide reductions to each lane0
     *     int aggregate = WarpReduce(temp_storage).HeadSegmentedReduce(
     *         thread_data, head_flag, cub::Max());
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p head_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 3, \p 7, \p 11, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename            ReductionOp,
        typename            FlagT>
    __device__ __forceinline__ T HeadSegmentedReduce(
        T                   input,              ///< [in] Calling thread's input
        FlagT               head_flag,          ///< [in] Head flag denoting whether or not \p input is the start of a new segment
        ReductionOp         reduction_op)       ///< [in] Reduction operator
    {
        return InternalWarpReduce(temp_storage).template SegmentedReduce<true>(input, head_flag, reduction_op);
    }


    /**
     * \brief Computes a segmented reduction in the calling warp where segments are defined by tail-flags.  The reduction of each segment is returned to the first lane in that segment (which always includes <em>lane</em><sub>0</sub>).
     *
     * Supports non-commutative reduction operators
     *
     * \smemreuse
     *
     * \par Snippet
     * The code snippet below illustrates a tail-segmented warp max
     * reduction within a block of 32 threads (one warp).
     * \par
     * \code
     * #include <cub/cub.cuh>
     *
     * __global__ void ExampleKernel(...)
     * {
     *     // Specialize WarpReduce for type int
     *     typedef cub::WarpReduce<int> WarpReduce;
     *
     *     // Allocate WarpReduce shared memory for one warp
     *     __shared__ typename WarpReduce::TempStorage temp_storage;
     *
     *     // Obtain one input item and flag per thread
     *     int thread_data = ...
     *     int tail_flag = ...
     *
     *     // Return the warp-wide reductions to each lane0
     *     int aggregate = WarpReduce(temp_storage).TailSegmentedReduce(
     *         thread_data, tail_flag, cub::Max());
     *
     * \endcode
     * \par
     * Suppose the set of input \p thread_data and \p tail_flag across the block of threads
     * is <tt>{0, 1, 2, 3, ..., 31</tt> and is <tt>{0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1</tt>,
     * respectively.  The corresponding output \p aggregate in threads 0, 4, 8, etc. will be
     * \p 3, \p 7, \p 11, etc. (and is undefined in other threads).
     *
     * \tparam ReductionOp     <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename            ReductionOp,
        typename            FlagT>
    __device__ __forceinline__ T TailSegmentedReduce(
        T                   input,              ///< [in] Calling thread's input
        FlagT               tail_flag,          ///< [in] Tail flag denoting whether or not \p input is the end of the current segment
        ReductionOp         reduction_op)       ///< [in] Reduction operator
    {
        return InternalWarpReduce(temp_storage).template SegmentedReduce<false>(input, tail_flag, reduction_op);
    }



    //@}  end member group
};

/** @} */       // end group WarpModule

}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)