Spaces:
Runtime error
Runtime error
File size: 11,222 Bytes
1dce2eb 977c95f 29a4916 c130377 e4e0166 29a4916 30ded18 02f199e 2479715 29a4916 2479715 c1b896a c89c010 2ee9471 1dce2eb 4996f01 53b8c78 51ac42f a24b9b5 c89c010 9be2593 c89c010 9561ef3 c89c010 4996f01 87e8119 4996f01 c89c010 29a4916 1dce2eb 041c78a c89c010 29a4916 d1b932e 7e9a1f7 041c78a d1b932e 9561ef3 7e9a1f7 434282c 29a4916 434282c 527204a 29a4916 434282c feef2d1 29a4916 434282c ae140ff 434282c 99293cd 29a4916 434282c 29a4916 d1b932e 041c78a d1b932e 041c78a d1b932e 657eada d1b932e 29a4916 d1b932e 29a4916 d1b932e 041c78a 29a4916 434282c 29a4916 c89c010 29a4916 041c78a 29a4916 e697003 527204a 29a4916 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import os
os.system('python setup.py install --user')
import argparse
import csv
import sys
sys.path.append("/home/user/.local/lib/python3.8/site-packages/diffvg-0.0.1-py3.8-linux-x86_64.egg")
print(sys.path)
from pathlib import Path
import gradio as gr
import torch
import yaml
from PIL import Image
from subprocess import call
import torch
import cv2
import matplotlib.pyplot as plt
import random
import argparse
import math
import errno
from tqdm import tqdm
import yaml
from easydict import EasyDict as edict
def run_cmd(command):
try:
print(command)
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
# run_cmd("gcc --version")
# run_cmd("pwd")
# run_cmd("ls")
# run_cmd("git submodule update --init --recursive")
# run_cmd("python setup.py install --user")
# run_cmd("pip3 list")
# import pydiffvg
#
# print("Sccuessfuly import diffvg ")
# run_cmd("pwd")
# run_cmd("ls")
# run_cmd("git submodule update --init --recursive")
# run_cmd("python setup.py install --user")
# run_cmd("python main.py --config config/base.yaml --experiment experiment_5x1 --signature smile --target figures/smile.png --log_dir log/")
from main import main_func
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument("--config", default="config/base.yaml", type=str)
parser.add_argument("--experiment", type=str)
parser.add_argument("--seed", type=int)
parser.add_argument("--target", type=str, help="target image path")
parser.add_argument('--log_dir', metavar='DIR', default="log/debug")
parser.add_argument('--initial', type=str, default="random", choices=['random', 'circle'])
parser.add_argument('--signature', default="demo", nargs='+', type=str)
parser.add_argument('--seginit', nargs='+', type=str)
parser.add_argument("--num_segments", type=int, default=4)
# parser.add_argument("--num_paths", type=str, default="1,1,1")
# parser.add_argument("--num_iter", type=int, default=500)
# parser.add_argument('--free', action='store_true')
# Please ensure that image resolution is divisible by pool_size; otherwise the performance would drop a lot.
# parser.add_argument('--pool_size', type=int, default=40, help="the pooled image size for next path initialization")
# parser.add_argument('--save_loss', action='store_true')
# parser.add_argument('--save_init', action='store_true')
# parser.add_argument('--save_image', action='store_true')
# parser.add_argument('--save_video', action='store_true')
# parser.add_argument('--print_weight', action='store_true')
# parser.add_argument('--circle_init_radius', type=float)
cfg = edict()
args = parser.parse_args()
cfg.debug = args.debug
cfg.config = args.config
cfg.experiment = args.experiment
cfg.seed = args.seed
cfg.target = args.target
cfg.log_dir = args.log_dir
cfg.initial = args.initial
cfg.signature = args.signature
# set cfg num_segments in command
cfg.num_segments = args.num_segments
if args.seginit is not None:
cfg.seginit = edict()
cfg.seginit.type = args.seginit[0]
if cfg.seginit.type == 'circle':
cfg.seginit.radius = float(args.seginit[1])
return cfg
def app_experiment_change(experiment_id):
if experiment_id == "add [1, 1, 1, 1, 1] total 5 paths":
return "experiment_5x1"
elif experiment_id == "add [1, 1, 1, 1, 1, 1, 1, 1] total 8 paths":
return "experiment_8x1"
elif experiment_id == "add [1,2,4,8,16,32, ...] total 128 paths":
return "experiment_exp2_128"
elif experiment_id == "add [1,2,4,8,16,32, ...] total 256 paths":
return "experiment_exp2_256"
cfg_arg = parse_args()
def run_live(img, experiment_id, cfg_arg=cfg_arg):
experiment = app_experiment_change(experiment_id)
cfg_arg.target = img
cfg_arg.experiment = experiment
main_func(img, experiment_id, cfg_arg=cfg_arg)
return 0, 1
# ROOT_PATH = sys.path[0] # 根目录
# # 模型路径
# model_path = "ultralytics/yolov5"
# # 模型名称临时变量
# model_name_tmp = ""
# # 设备临时变量
# device_tmp = ""
# # 文件后缀
# suffix_list = [".csv", ".yaml"]
# def parse_args(known=False):
# parser = argparse.ArgumentParser(description="Gradio LIVE")
# parser.add_argument(
# "--model_name", "-mn", default="yolov5s", type=str, help="model name"
# )
# parser.add_argument(
# "--model_cfg",
# "-mc",
# default="./model_config/model_name_p5_all.yaml",
# type=str,
# help="model config",
# )
# parser.add_argument(
# "--cls_name",
# "-cls",
# default="./cls_name/cls_name.yaml",
# type=str,
# help="cls name",
# )
# parser.add_argument(
# "--nms_conf",
# "-conf",
# default=0.5,
# type=float,
# help="model NMS confidence threshold",
# )
# parser.add_argument(
# "--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
# )
#
# parser.add_argument(
# "--label_dnt_show",
# "-lds",
# action="store_false",
# default=True,
# help="label show",
# )
# parser.add_argument(
# "--device",
# "-dev",
# default="cpu",
# type=str,
# help="cuda or cpu, hugging face only cpu",
# )
# parser.add_argument(
# "--inference_size", "-isz", default=640, type=int, help="model inference size"
# )
#
# args = parser.parse_known_args()[0] if known else parser.parse_args()
# return args
# # 模型加载
# def model_loading(model_name, device):
#
# # 加载本地模型
# model = torch.hub.load(model_path, model_name, force_reload=True, device=device)
#
# return model
# # 检测信息
# def export_json(results, model, img_size):
#
# return [
# [
# {
# "id": int(i),
# "class": int(result[i][5]),
# "class_name": model.model.names[int(result[i][5])],
# "normalized_box": {
# "x0": round(result[i][:4].tolist()[0], 6),
# "y0": round(result[i][:4].tolist()[1], 6),
# "x1": round(result[i][:4].tolist()[2], 6),
# "y1": round(result[i][:4].tolist()[3], 6),
# },
# "confidence": round(float(result[i][4]), 2),
# "fps": round(1000 / float(results.t[1]), 2),
# "width": img_size[0],
# "height": img_size[1],
# }
# for i in range(len(result))
# ]
# for result in results.xyxyn
# ]
# def yolo_det(img, experiment_id, device=None, model_name=None, inference_size=None, conf=None, iou=None, label_opt=None, model_cls=None):
#
# global model, model_name_tmp, device_tmp
#
# if model_name_tmp != model_name:
# # 模型判断,避免反复加载
# model_name_tmp = model_name
# model = model_loading(model_name_tmp, device)
# elif device_tmp != device:
# device_tmp = device
# model = model_loading(model_name_tmp, device)
#
# # -----------模型调参-----------
# model.conf = conf # NMS 置信度阈值
# model.iou = iou # NMS IOU阈值
# model.max_det = 1000 # 最大检测框数
# model.classes = model_cls # 模型类别
#
# results = model(img, size=inference_size) # 检测
# results.render(labels=label_opt) # 渲染
#
# det_img = Image.fromarray(results.imgs[0]) # 检测图片
#
# det_json = export_json(results, model, img.size)[0] # 检测信息
#
# return det_img, det_json
# def run_cmd(command):
# try:
# print(command)
# call(command, shell=True)
# except KeyboardInterrupt:
# print("Process interrupted")
# sys.exit(1)
#
# run_cmd("gcc --version")
# run_cmd("pwd")
# run_cmd("ls")
# run_cmd("git submodule update --init --recursive")
# run_cmd("python setup.py install --user")
# run_cmd("ls")
# run_cmd("python main.py --config config/base.yaml --experiment experiment_5x1 --signature smile --target figures/smile.png --log_dir log/")
# # yaml文件解析
# def yaml_parse(file_path):
# return yaml.safe_load(open(file_path, "r", encoding="utf-8").read())
#
#
# # yaml csv 文件解析
# def yaml_csv(file_path, file_tag):
# file_suffix = Path(file_path).suffix
# if file_suffix == suffix_list[0]:
# # 模型名称
# file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
# elif file_suffix == suffix_list[1]:
# # 模型名称
# file_names = yaml_parse(file_path).get(file_tag) # yaml版
# else:
# print(f"{file_path}格式不正确!程序退出!")
# sys.exit()
#
# return file_names
def main(args):
gr.close_all()
# -------------------Inputs-------------------
inputs_img = gr.inputs.Image(type="pil", label="Input Image")
experiment_id = gr.inputs.Radio(
choices=[
"add [1, 1, 1, 1, 1] total 5 paths",
"add [1, 1, 1, 1, 1, 1, 1, 1] total 8 paths",
"add [1,2,4,8,16,32, ...] total 128 paths",
"add [1,2,4,8,16,32, ...] total 256 paths"], type="value", default="add [1, 1, 1, 1, 1] total 5 paths", label="Path Adding Scheduler"
)
# inputs
inputs = [
inputs_img, # input image
experiment_id, # path adding scheduler
]
# outputs
outputs = gr.outputs.Image(type="numpy", label="检测图片")
outputs02 = gr.outputs.JSON(label="检测信息")
# title
title = "LIVE: Towards Layer-wise Image Vectorization"
# description
description = "<div align='center'>(CVPR 2022 Oral Presentation)</div>" \
"<div align='center'>Without GPUs, it will cost longer time.</div>"
# examples
examples = [
[
"./examples/1.png",
"add [1, 1, 1, 1, 1] total 5 paths",
],
[
"./examples/2.png",
"add [1, 1, 1, 1, 1] total 5 paths",
],
[
"./examples/3.jpg",
"add [1,2,4,8,16,32, ...] total 128 paths",
],
[
"./examples/4.png",
"add [1,2,4,8,16,32, ...] total 256 paths",
],
[
"./examples/5.png",
"add [1, 1, 1, 1, 1] total 5 paths",
],
]
# Interface
gr.Interface(
fn=run_live,
inputs=inputs,
outputs=[outputs, outputs02],
title=title,
description=description,
examples=examples,
theme="seafoam",
# live=True, # 实时变更输出
flagging_dir="run" # 输出目录
# ).launch(inbrowser=True, auth=['admin', 'admin'])
).launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
enable_queue=True
# favicon_path="./icon/logo.ico",
)
if __name__ == "__main__":
args = parse_args()
main(args)
|