Spaces:
Runtime error
Runtime error
File size: 7,933 Bytes
29a4916 30ded18 2479715 29a4916 2479715 29a4916 041c78a 29a4916 3617552 29a4916 041c78a 29a4916 527204a d1b932e 7e9a1f7 041c78a d1b932e 7e9a1f7 d1b932e 29a4916 527204a 3617552 29a4916 ae140ff 29a4916 ae140ff 29a4916 d1b932e 041c78a d1b932e 041c78a d1b932e 657eada d1b932e 29a4916 d1b932e 29a4916 d1b932e 041c78a 29a4916 041c78a 29a4916 527204a 29a4916 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import argparse
import csv
import sys
from pathlib import Path
import gradio as gr
import torch
import yaml
from PIL import Image
ROOT_PATH = sys.path[0] # 根目录
# 模型路径
model_path = "ultralytics/yolov5"
# 模型名称临时变量
model_name_tmp = ""
# 设备临时变量
device_tmp = ""
# 文件后缀
suffix_list = [".csv", ".yaml"]
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio LIVE")
parser.add_argument(
"--model_name", "-mn", default="yolov5s", type=str, help="model name"
)
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_p5_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument(
"--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
)
parser.add_argument(
"--label_dnt_show",
"-lds",
action="store_false",
default=True,
help="label show",
)
parser.add_argument(
"--device",
"-dev",
default="cpu",
type=str,
help="cuda or cpu, hugging face only cpu",
)
parser.add_argument(
"--inference_size", "-isz", default=640, type=int, help="model inference size"
)
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# 模型加载
def model_loading(model_name, device):
# 加载本地模型
model = torch.hub.load(model_path, model_name, force_reload=True, device=device)
return model
# 检测信息
def export_json(results, model, img_size):
return [
[
{
"id": int(i),
"class": int(result[i][5]),
"class_name": model.model.names[int(result[i][5])],
"normalized_box": {
"x0": round(result[i][:4].tolist()[0], 6),
"y0": round(result[i][:4].tolist()[1], 6),
"x1": round(result[i][:4].tolist()[2], 6),
"y1": round(result[i][:4].tolist()[3], 6),
},
"confidence": round(float(result[i][4]), 2),
"fps": round(1000 / float(results.t[1]), 2),
"width": img_size[0],
"height": img_size[1],
}
for i in range(len(result))
]
for result in results.xyxyn
]
def yolo_det(img, experiment_id, device=None, model_name=None, inference_size=None, conf=None, iou=None, label_opt=None, model_cls=None):
global model, model_name_tmp, device_tmp
if model_name_tmp != model_name:
# 模型判断,避免反复加载
model_name_tmp = model_name
model = model_loading(model_name_tmp, device)
elif device_tmp != device:
device_tmp = device
model = model_loading(model_name_tmp, device)
# -----------模型调参-----------
model.conf = conf # NMS 置信度阈值
model.iou = iou # NMS IOU阈值
model.max_det = 1000 # 最大检测框数
model.classes = model_cls # 模型类别
results = model(img, size=inference_size) # 检测
results.render(labels=label_opt) # 渲染
det_img = Image.fromarray(results.imgs[0]) # 检测图片
det_json = export_json(results, model, img.size)[0] # 检测信息
return det_img, det_json
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, "r", encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
def main(args):
gr.close_all()
global model
slider_step = 0.05 # 滑动步长
nms_conf = args.nms_conf
nms_iou = args.nms_iou
label_opt = args.label_dnt_show
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
device = args.device
inference_size = args.inference_size
# 模型加载
model = model_loading(model_name, device)
model_names = yaml_csv(model_cfg, "model_names")
model_cls_name = yaml_csv(cls_name, "model_cls_name")
# -------------------Inputs-------------------
inputs_img = gr.inputs.Image(type="pil", label="Input Image")
experiment_id = gr.inputs.Radio(
choices=[
"add [1, 1, 1, 1, 1] total 5 paths",
"add [1, 1, 1, 1, 1, 1, 1, 1] total 8 paths",
"add [1,2,4,8,16,32, ...] total 128 paths",
"add [1,2,4,8,16,32, ...] total 256 paths"], type="value", default="add [1,1,1,1,1] paths", label="Path Adding Scheduler"
)
device = gr.inputs.Dropdown(
choices=["cpu"], default=device, type="value", label="设备"
)
inputs_model = gr.inputs.Dropdown(
choices=model_names, default=model_name, type="value", label="模型"
)
inputs_size = gr.inputs.Radio(
choices=[320, 640], default=inference_size, label="推理尺寸"
)
input_conf = gr.inputs.Slider(
0, 1, step=slider_step, default=nms_conf, label="置信度阈值"
)
inputs_iou = gr.inputs.Slider(
0, 1, step=slider_step, default=nms_iou, label="IoU 阈值"
)
inputs_label = gr.inputs.Checkbox(default=label_opt, label="标签显示")
inputs_clsName = gr.inputs.CheckboxGroup(
choices=model_cls_name, default=model_cls_name, type="index", label="类别"
)
# 输入参数
inputs = [
inputs_img, # 输入图片
experiment_id, # path adding scheduler
# device, # 设备
# inputs_model, # 模型
# inputs_size, # 推理尺寸
# input_conf, # 置信度阈值
# inputs_iou, # IoU阈值
# inputs_label, # 标签显示
# inputs_clsName, # 类别
]
# 输出参数
outputs = gr.outputs.Image(type="pil", label="检测图片")
outputs02 = gr.outputs.JSON(label="检测信息")
# 标题
title = "LIVE: Towards Layer-wise Image Vectorization"
# 描述
description = "<div align='center'>(CVPR 2022 Oral Presentation)</div>"
# 示例图片
examples = [
[
"./examples/1.png",
"add [1, 1, 1, 1, 1] total 5 paths",
],
[
"./examples/2.png",
"add [1, 1, 1, 1, 1] total 5 paths",
],
[
"./examples/3.jpg",
"add [1,2,4,8,16,32, ...] total 128 paths",
],
[
"./examples/4.png",
"add [1,2,4,8,16,32, ...] total 256 paths",
],
[
"./examples/5.png",
"add [1, 1, 1, 1, 1] total 5 paths",
],
]
# 接口
gr.Interface(
fn=yolo_det,
inputs=inputs,
outputs=[outputs, outputs02],
title=title,
description=description,
examples=examples,
theme="seafoam",
# live=True, # 实时变更输出
flagging_dir="run" # 输出目录
# ).launch(inbrowser=True, auth=['admin', 'admin'])
).launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
# favicon_path="./icon/logo.ico",
)
if __name__ == "__main__":
args = parse_args()
main(args)
|