Spaces:
Runtime error
Runtime error
File size: 18,738 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::AgentScan implements a stateful abstraction of CUDA thread blocks for participating in device-wide prefix scan .
*/
#pragma once
#include <iterator>
#include "single_pass_scan_operators.cuh"
#include "../block/block_load.cuh"
#include "../block/block_store.cuh"
#include "../block/block_scan.cuh"
#include "../config.cuh"
#include "../grid/grid_queue.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Tuning policy types
******************************************************************************/
/**
* Parameterizable tuning policy type for AgentScan
*/
template <
int NOMINAL_BLOCK_THREADS_4B, ///< Threads per thread block
int NOMINAL_ITEMS_PER_THREAD_4B, ///< Items per thread (per tile of input)
typename ComputeT, ///< Dominant compute type
BlockLoadAlgorithm _LOAD_ALGORITHM, ///< The BlockLoad algorithm to use
CacheLoadModifier _LOAD_MODIFIER, ///< Cache load modifier for reading input elements
BlockStoreAlgorithm _STORE_ALGORITHM, ///< The BlockStore algorithm to use
BlockScanAlgorithm _SCAN_ALGORITHM, ///< The BlockScan algorithm to use
typename ScalingType = MemBoundScaling<NOMINAL_BLOCK_THREADS_4B, NOMINAL_ITEMS_PER_THREAD_4B, ComputeT> >
struct AgentScanPolicy :
ScalingType
{
static const BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM; ///< The BlockLoad algorithm to use
static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements
static const BlockStoreAlgorithm STORE_ALGORITHM = _STORE_ALGORITHM; ///< The BlockStore algorithm to use
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use
};
/******************************************************************************
* Thread block abstractions
******************************************************************************/
/**
* \brief AgentScan implements a stateful abstraction of CUDA thread blocks for participating in device-wide prefix scan .
*/
template <
typename AgentScanPolicyT, ///< Parameterized AgentScanPolicyT tuning policy type
typename InputIteratorT, ///< Random-access input iterator type
typename OutputIteratorT, ///< Random-access output iterator type
typename ScanOpT, ///< Scan functor type
typename InitValueT, ///< The init_value element for ScanOpT type (cub::NullType for inclusive scan)
typename OffsetT> ///< Signed integer type for global offsets
struct AgentScan
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
// The input value type
typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;
// The output value type
typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT; // ... else the output iterator's value type
// Tile status descriptor interface type
typedef ScanTileState<OutputT> ScanTileStateT;
// Input iterator wrapper type (for applying cache modifier)
typedef typename If<IsPointer<InputIteratorT>::VALUE,
CacheModifiedInputIterator<AgentScanPolicyT::LOAD_MODIFIER, InputT, OffsetT>, // Wrap the native input pointer with CacheModifiedInputIterator
InputIteratorT>::Type // Directly use the supplied input iterator type
WrappedInputIteratorT;
// Constants
enum
{
IS_INCLUSIVE = Equals<InitValueT, NullType>::VALUE, // Inclusive scan if no init_value type is provided
BLOCK_THREADS = AgentScanPolicyT::BLOCK_THREADS,
ITEMS_PER_THREAD = AgentScanPolicyT::ITEMS_PER_THREAD,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD,
};
// Parameterized BlockLoad type
typedef BlockLoad<
OutputT,
AgentScanPolicyT::BLOCK_THREADS,
AgentScanPolicyT::ITEMS_PER_THREAD,
AgentScanPolicyT::LOAD_ALGORITHM>
BlockLoadT;
// Parameterized BlockStore type
typedef BlockStore<
OutputT,
AgentScanPolicyT::BLOCK_THREADS,
AgentScanPolicyT::ITEMS_PER_THREAD,
AgentScanPolicyT::STORE_ALGORITHM>
BlockStoreT;
// Parameterized BlockScan type
typedef BlockScan<
OutputT,
AgentScanPolicyT::BLOCK_THREADS,
AgentScanPolicyT::SCAN_ALGORITHM>
BlockScanT;
// Callback type for obtaining tile prefix during block scan
typedef TilePrefixCallbackOp<
OutputT,
ScanOpT,
ScanTileStateT>
TilePrefixCallbackOpT;
// Stateful BlockScan prefix callback type for managing a running total while scanning consecutive tiles
typedef BlockScanRunningPrefixOp<
OutputT,
ScanOpT>
RunningPrefixCallbackOp;
// Shared memory type for this thread block
union _TempStorage
{
typename BlockLoadT::TempStorage load; // Smem needed for tile loading
typename BlockStoreT::TempStorage store; // Smem needed for tile storing
struct
{
typename TilePrefixCallbackOpT::TempStorage prefix; // Smem needed for cooperative prefix callback
typename BlockScanT::TempStorage scan; // Smem needed for tile scanning
};
};
// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
_TempStorage& temp_storage; ///< Reference to temp_storage
WrappedInputIteratorT d_in; ///< Input data
OutputIteratorT d_out; ///< Output data
ScanOpT scan_op; ///< Binary scan operator
InitValueT init_value; ///< The init_value element for ScanOpT
//---------------------------------------------------------------------
// Block scan utility methods
//---------------------------------------------------------------------
/**
* Exclusive scan specialization (first tile)
*/
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
OutputT init_value,
ScanOpT scan_op,
OutputT &block_aggregate,
Int2Type<false> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).ExclusiveScan(items, items, init_value, scan_op, block_aggregate);
block_aggregate = scan_op(init_value, block_aggregate);
}
/**
* Inclusive scan specialization (first tile)
*/
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
InitValueT /*init_value*/,
ScanOpT scan_op,
OutputT &block_aggregate,
Int2Type<true> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).InclusiveScan(items, items, scan_op, block_aggregate);
}
/**
* Exclusive scan specialization (subsequent tiles)
*/
template <typename PrefixCallback>
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
ScanOpT scan_op,
PrefixCallback &prefix_op,
Int2Type<false> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).ExclusiveScan(items, items, scan_op, prefix_op);
}
/**
* Inclusive scan specialization (subsequent tiles)
*/
template <typename PrefixCallback>
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
ScanOpT scan_op,
PrefixCallback &prefix_op,
Int2Type<true> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).InclusiveScan(items, items, scan_op, prefix_op);
}
//---------------------------------------------------------------------
// Constructor
//---------------------------------------------------------------------
// Constructor
__device__ __forceinline__
AgentScan(
TempStorage& temp_storage, ///< Reference to temp_storage
InputIteratorT d_in, ///< Input data
OutputIteratorT d_out, ///< Output data
ScanOpT scan_op, ///< Binary scan operator
InitValueT init_value) ///< Initial value to seed the exclusive scan
:
temp_storage(temp_storage.Alias()),
d_in(d_in),
d_out(d_out),
scan_op(scan_op),
init_value(init_value)
{}
//---------------------------------------------------------------------
// Cooperatively scan a device-wide sequence of tiles with other CTAs
//---------------------------------------------------------------------
/**
* Process a tile of input (dynamic chained scan)
*/
template <bool IS_LAST_TILE> ///< Whether the current tile is the last tile
__device__ __forceinline__ void ConsumeTile(
OffsetT num_remaining, ///< Number of global input items remaining (including this tile)
int tile_idx, ///< Tile index
OffsetT tile_offset, ///< Tile offset
ScanTileStateT& tile_state) ///< Global tile state descriptor
{
// Load items
OutputT items[ITEMS_PER_THREAD];
if (IS_LAST_TILE)
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items, num_remaining);
else
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items);
CTA_SYNC();
// Perform tile scan
if (tile_idx == 0)
{
// Scan first tile
OutputT block_aggregate;
ScanTile(items, init_value, scan_op, block_aggregate, Int2Type<IS_INCLUSIVE>());
if ((!IS_LAST_TILE) && (threadIdx.x == 0))
tile_state.SetInclusive(0, block_aggregate);
}
else
{
// Scan non-first tile
TilePrefixCallbackOpT prefix_op(tile_state, temp_storage.prefix, scan_op, tile_idx);
ScanTile(items, scan_op, prefix_op, Int2Type<IS_INCLUSIVE>());
}
CTA_SYNC();
// Store items
if (IS_LAST_TILE)
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items, num_remaining);
else
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items);
}
/**
* Scan tiles of items as part of a dynamic chained scan
*/
__device__ __forceinline__ void ConsumeRange(
int num_items, ///< Total number of input items
ScanTileStateT& tile_state, ///< Global tile state descriptor
int start_tile) ///< The starting tile for the current grid
{
// Blocks are launched in increasing order, so just assign one tile per block
int tile_idx = start_tile + blockIdx.x; // Current tile index
OffsetT tile_offset = OffsetT(TILE_ITEMS) * tile_idx; // Global offset for the current tile
OffsetT num_remaining = num_items - tile_offset; // Remaining items (including this tile)
if (num_remaining > TILE_ITEMS)
{
// Not last tile
ConsumeTile<false>(num_remaining, tile_idx, tile_offset, tile_state);
}
else if (num_remaining > 0)
{
// Last tile
ConsumeTile<true>(num_remaining, tile_idx, tile_offset, tile_state);
}
}
//---------------------------------------------------------------------
// Scan an sequence of consecutive tiles (independent of other thread blocks)
//---------------------------------------------------------------------
/**
* Process a tile of input
*/
template <
bool IS_FIRST_TILE,
bool IS_LAST_TILE>
__device__ __forceinline__ void ConsumeTile(
OffsetT tile_offset, ///< Tile offset
RunningPrefixCallbackOp& prefix_op, ///< Running prefix operator
int valid_items = TILE_ITEMS) ///< Number of valid items in the tile
{
// Load items
OutputT items[ITEMS_PER_THREAD];
if (IS_LAST_TILE)
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items, valid_items);
else
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items);
CTA_SYNC();
// Block scan
if (IS_FIRST_TILE)
{
OutputT block_aggregate;
ScanTile(items, init_value, scan_op, block_aggregate, Int2Type<IS_INCLUSIVE>());
prefix_op.running_total = block_aggregate;
}
else
{
ScanTile(items, scan_op, prefix_op, Int2Type<IS_INCLUSIVE>());
}
CTA_SYNC();
// Store items
if (IS_LAST_TILE)
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items, valid_items);
else
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items);
}
/**
* Scan a consecutive share of input tiles
*/
__device__ __forceinline__ void ConsumeRange(
OffsetT range_offset, ///< [in] Threadblock begin offset (inclusive)
OffsetT range_end) ///< [in] Threadblock end offset (exclusive)
{
BlockScanRunningPrefixOp<OutputT, ScanOpT> prefix_op(scan_op);
if (range_offset + TILE_ITEMS <= range_end)
{
// Consume first tile of input (full)
ConsumeTile<true, true>(range_offset, prefix_op);
range_offset += TILE_ITEMS;
// Consume subsequent full tiles of input
while (range_offset + TILE_ITEMS <= range_end)
{
ConsumeTile<false, true>(range_offset, prefix_op);
range_offset += TILE_ITEMS;
}
// Consume a partially-full tile
if (range_offset < range_end)
{
int valid_items = range_end - range_offset;
ConsumeTile<false, false>(range_offset, prefix_op, valid_items);
}
}
else
{
// Consume the first tile of input (partially-full)
int valid_items = range_end - range_offset;
ConsumeTile<true, false>(range_offset, prefix_op, valid_items);
}
}
/**
* Scan a consecutive share of input tiles, seeded with the specified prefix value
*/
__device__ __forceinline__ void ConsumeRange(
OffsetT range_offset, ///< [in] Threadblock begin offset (inclusive)
OffsetT range_end, ///< [in] Threadblock end offset (exclusive)
OutputT prefix) ///< [in] The prefix to apply to the scan segment
{
BlockScanRunningPrefixOp<OutputT, ScanOpT> prefix_op(prefix, scan_op);
// Consume full tiles of input
while (range_offset + TILE_ITEMS <= range_end)
{
ConsumeTile<true, false>(range_offset, prefix_op);
range_offset += TILE_ITEMS;
}
// Consume a partially-full tile
if (range_offset < range_end)
{
int valid_items = range_end - range_offset;
ConsumeTile<false, false>(range_offset, prefix_op, valid_items);
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|