Spaces:
Runtime error
Runtime error
File size: 25,194 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::BlockRadixRank provides operations for ranking unsigned integer types within a CUDA thread block
*/
#pragma once
#include <stdint.h>
#include "../thread/thread_reduce.cuh"
#include "../thread/thread_scan.cuh"
#include "../block/block_scan.cuh"
#include "../config.cuh"
#include "../util_ptx.cuh"
#include "../util_type.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief BlockRadixRank provides operations for ranking unsigned integer types within a CUDA thread block.
* \ingroup BlockModule
*
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam RADIX_BITS The number of radix bits per digit place
* \tparam IS_DESCENDING Whether or not the sorted-order is high-to-low
* \tparam MEMOIZE_OUTER_SCAN <b>[optional]</b> Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure (default: true for architectures SM35 and newer, false otherwise). See BlockScanAlgorithm::BLOCK_SCAN_RAKING_MEMOIZE for more details.
* \tparam INNER_SCAN_ALGORITHM <b>[optional]</b> The cub::BlockScanAlgorithm algorithm to use (default: cub::BLOCK_SCAN_WARP_SCANS)
* \tparam SMEM_CONFIG <b>[optional]</b> Shared memory bank mode (default: \p cudaSharedMemBankSizeFourByte)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* Blah...
* - Keys must be in a form suitable for radix ranking (i.e., unsigned bits).
* - \blocked
*
* \par Performance Considerations
* - \granularity
*
* \par Examples
* \par
* - <b>Example 1:</b> Simple radix rank of 32-bit integer keys
* \code
* #include <cub/cub.cuh>
*
* template <int BLOCK_THREADS>
* __global__ void ExampleKernel(...)
* {
*
* \endcode
*/
template <
int BLOCK_DIM_X,
int RADIX_BITS,
bool IS_DESCENDING,
bool MEMOIZE_OUTER_SCAN = (CUB_PTX_ARCH >= 350) ? true : false,
BlockScanAlgorithm INNER_SCAN_ALGORITHM = BLOCK_SCAN_WARP_SCANS,
cudaSharedMemConfig SMEM_CONFIG = cudaSharedMemBankSizeFourByte,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockRadixRank
{
private:
/******************************************************************************
* Type definitions and constants
******************************************************************************/
// Integer type for digit counters (to be packed into words of type PackedCounters)
typedef unsigned short DigitCounter;
// Integer type for packing DigitCounters into columns of shared memory banks
typedef typename If<(SMEM_CONFIG == cudaSharedMemBankSizeEightByte),
unsigned long long,
unsigned int>::Type PackedCounter;
enum
{
// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
RADIX_DIGITS = 1 << RADIX_BITS,
LOG_WARP_THREADS = CUB_LOG_WARP_THREADS(PTX_ARCH),
WARP_THREADS = 1 << LOG_WARP_THREADS,
WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,
BYTES_PER_COUNTER = sizeof(DigitCounter),
LOG_BYTES_PER_COUNTER = Log2<BYTES_PER_COUNTER>::VALUE,
PACKING_RATIO = sizeof(PackedCounter) / sizeof(DigitCounter),
LOG_PACKING_RATIO = Log2<PACKING_RATIO>::VALUE,
LOG_COUNTER_LANES = CUB_MAX((RADIX_BITS - LOG_PACKING_RATIO), 0), // Always at least one lane
COUNTER_LANES = 1 << LOG_COUNTER_LANES,
// The number of packed counters per thread (plus one for padding)
PADDED_COUNTER_LANES = COUNTER_LANES + 1,
RAKING_SEGMENT = PADDED_COUNTER_LANES,
};
public:
enum
{
/// Number of bin-starting offsets tracked per thread
BINS_TRACKED_PER_THREAD = CUB_MAX(1, (RADIX_DIGITS + BLOCK_THREADS - 1) / BLOCK_THREADS),
};
private:
/// BlockScan type
typedef BlockScan<
PackedCounter,
BLOCK_DIM_X,
INNER_SCAN_ALGORITHM,
BLOCK_DIM_Y,
BLOCK_DIM_Z,
PTX_ARCH>
BlockScan;
/// Shared memory storage layout type for BlockRadixRank
struct __align__(16) _TempStorage
{
union Aliasable
{
DigitCounter digit_counters[PADDED_COUNTER_LANES][BLOCK_THREADS][PACKING_RATIO];
PackedCounter raking_grid[BLOCK_THREADS][RAKING_SEGMENT];
} aliasable;
// Storage for scanning local ranks
typename BlockScan::TempStorage block_scan;
};
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
/// Copy of raking segment, promoted to registers
PackedCounter cached_segment[RAKING_SEGMENT];
/******************************************************************************
* Utility methods
******************************************************************************/
/**
* Internal storage allocator
*/
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/**
* Performs upsweep raking reduction, returning the aggregate
*/
__device__ __forceinline__ PackedCounter Upsweep()
{
PackedCounter *smem_raking_ptr = temp_storage.aliasable.raking_grid[linear_tid];
PackedCounter *raking_ptr;
if (MEMOIZE_OUTER_SCAN)
{
// Copy data into registers
#pragma unroll
for (int i = 0; i < RAKING_SEGMENT; i++)
{
cached_segment[i] = smem_raking_ptr[i];
}
raking_ptr = cached_segment;
}
else
{
raking_ptr = smem_raking_ptr;
}
return internal::ThreadReduce<RAKING_SEGMENT>(raking_ptr, Sum());
}
/// Performs exclusive downsweep raking scan
__device__ __forceinline__ void ExclusiveDownsweep(
PackedCounter raking_partial)
{
PackedCounter *smem_raking_ptr = temp_storage.aliasable.raking_grid[linear_tid];
PackedCounter *raking_ptr = (MEMOIZE_OUTER_SCAN) ?
cached_segment :
smem_raking_ptr;
// Exclusive raking downsweep scan
internal::ThreadScanExclusive<RAKING_SEGMENT>(raking_ptr, raking_ptr, Sum(), raking_partial);
if (MEMOIZE_OUTER_SCAN)
{
// Copy data back to smem
#pragma unroll
for (int i = 0; i < RAKING_SEGMENT; i++)
{
smem_raking_ptr[i] = cached_segment[i];
}
}
}
/**
* Reset shared memory digit counters
*/
__device__ __forceinline__ void ResetCounters()
{
// Reset shared memory digit counters
#pragma unroll
for (int LANE = 0; LANE < PADDED_COUNTER_LANES; LANE++)
{
*((PackedCounter*) temp_storage.aliasable.digit_counters[LANE][linear_tid]) = 0;
}
}
/**
* Block-scan prefix callback
*/
struct PrefixCallBack
{
__device__ __forceinline__ PackedCounter operator()(PackedCounter block_aggregate)
{
PackedCounter block_prefix = 0;
// Propagate totals in packed fields
#pragma unroll
for (int PACKED = 1; PACKED < PACKING_RATIO; PACKED++)
{
block_prefix += block_aggregate << (sizeof(DigitCounter) * 8 * PACKED);
}
return block_prefix;
}
};
/**
* Scan shared memory digit counters.
*/
__device__ __forceinline__ void ScanCounters()
{
// Upsweep scan
PackedCounter raking_partial = Upsweep();
// Compute exclusive sum
PackedCounter exclusive_partial;
PrefixCallBack prefix_call_back;
BlockScan(temp_storage.block_scan).ExclusiveSum(raking_partial, exclusive_partial, prefix_call_back);
// Downsweep scan with exclusive partial
ExclusiveDownsweep(exclusive_partial);
}
public:
/// \smemstorage{BlockScan}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockRadixRank()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockRadixRank(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Raking
*********************************************************************/
//@{
/**
* \brief Rank keys.
*/
template <
typename UnsignedBits,
int KEYS_PER_THREAD>
__device__ __forceinline__ void RankKeys(
UnsignedBits (&keys)[KEYS_PER_THREAD], ///< [in] Keys for this tile
int (&ranks)[KEYS_PER_THREAD], ///< [out] For each key, the local rank within the tile
int current_bit, ///< [in] The least-significant bit position of the current digit to extract
int num_bits) ///< [in] The number of bits in the current digit
{
DigitCounter thread_prefixes[KEYS_PER_THREAD]; // For each key, the count of previous keys in this tile having the same digit
DigitCounter* digit_counters[KEYS_PER_THREAD]; // For each key, the byte-offset of its corresponding digit counter in smem
// Reset shared memory digit counters
ResetCounters();
#pragma unroll
for (int ITEM = 0; ITEM < KEYS_PER_THREAD; ++ITEM)
{
// Get digit
unsigned int digit = BFE(keys[ITEM], current_bit, num_bits);
// Get sub-counter
unsigned int sub_counter = digit >> LOG_COUNTER_LANES;
// Get counter lane
unsigned int counter_lane = digit & (COUNTER_LANES - 1);
if (IS_DESCENDING)
{
sub_counter = PACKING_RATIO - 1 - sub_counter;
counter_lane = COUNTER_LANES - 1 - counter_lane;
}
// Pointer to smem digit counter
digit_counters[ITEM] = &temp_storage.aliasable.digit_counters[counter_lane][linear_tid][sub_counter];
// Load thread-exclusive prefix
thread_prefixes[ITEM] = *digit_counters[ITEM];
// Store inclusive prefix
*digit_counters[ITEM] = thread_prefixes[ITEM] + 1;
}
CTA_SYNC();
// Scan shared memory counters
ScanCounters();
CTA_SYNC();
// Extract the local ranks of each key
for (int ITEM = 0; ITEM < KEYS_PER_THREAD; ++ITEM)
{
// Add in thread block exclusive prefix
ranks[ITEM] = thread_prefixes[ITEM] + *digit_counters[ITEM];
}
}
/**
* \brief Rank keys. For the lower \p RADIX_DIGITS threads, digit counts for each digit are provided for the corresponding thread.
*/
template <
typename UnsignedBits,
int KEYS_PER_THREAD>
__device__ __forceinline__ void RankKeys(
UnsignedBits (&keys)[KEYS_PER_THREAD], ///< [in] Keys for this tile
int (&ranks)[KEYS_PER_THREAD], ///< [out] For each key, the local rank within the tile (out parameter)
int current_bit, ///< [in] The least-significant bit position of the current digit to extract
int num_bits, ///< [in] The number of bits in the current digit
int (&exclusive_digit_prefix)[BINS_TRACKED_PER_THREAD]) ///< [out] The exclusive prefix sum for the digits [(threadIdx.x * BINS_TRACKED_PER_THREAD) ... (threadIdx.x * BINS_TRACKED_PER_THREAD) + BINS_TRACKED_PER_THREAD - 1]
{
// Rank keys
RankKeys(keys, ranks, current_bit, num_bits);
// Get the inclusive and exclusive digit totals corresponding to the calling thread.
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
int bin_idx = (linear_tid * BINS_TRACKED_PER_THREAD) + track;
if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
{
if (IS_DESCENDING)
bin_idx = RADIX_DIGITS - bin_idx - 1;
// Obtain ex/inclusive digit counts. (Unfortunately these all reside in the
// first counter column, resulting in unavoidable bank conflicts.)
unsigned int counter_lane = (bin_idx & (COUNTER_LANES - 1));
unsigned int sub_counter = bin_idx >> (LOG_COUNTER_LANES);
exclusive_digit_prefix[track] = temp_storage.aliasable.digit_counters[counter_lane][0][sub_counter];
}
}
}
};
/**
* Radix-rank using match.any
*/
template <
int BLOCK_DIM_X,
int RADIX_BITS,
bool IS_DESCENDING,
BlockScanAlgorithm INNER_SCAN_ALGORITHM = BLOCK_SCAN_WARP_SCANS,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockRadixRankMatch
{
private:
/******************************************************************************
* Type definitions and constants
******************************************************************************/
typedef int32_t RankT;
typedef int32_t DigitCounterT;
enum
{
// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
RADIX_DIGITS = 1 << RADIX_BITS,
LOG_WARP_THREADS = CUB_LOG_WARP_THREADS(PTX_ARCH),
WARP_THREADS = 1 << LOG_WARP_THREADS,
WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,
PADDED_WARPS = ((WARPS & 0x1) == 0) ?
WARPS + 1 :
WARPS,
COUNTERS = PADDED_WARPS * RADIX_DIGITS,
RAKING_SEGMENT = (COUNTERS + BLOCK_THREADS - 1) / BLOCK_THREADS,
PADDED_RAKING_SEGMENT = ((RAKING_SEGMENT & 0x1) == 0) ?
RAKING_SEGMENT + 1 :
RAKING_SEGMENT,
};
public:
enum
{
/// Number of bin-starting offsets tracked per thread
BINS_TRACKED_PER_THREAD = CUB_MAX(1, (RADIX_DIGITS + BLOCK_THREADS - 1) / BLOCK_THREADS),
};
private:
/// BlockScan type
typedef BlockScan<
DigitCounterT,
BLOCK_THREADS,
INNER_SCAN_ALGORITHM,
BLOCK_DIM_Y,
BLOCK_DIM_Z,
PTX_ARCH>
BlockScanT;
/// Shared memory storage layout type for BlockRadixRank
struct __align__(16) _TempStorage
{
typename BlockScanT::TempStorage block_scan;
union __align__(16) Aliasable
{
volatile DigitCounterT warp_digit_counters[RADIX_DIGITS][PADDED_WARPS];
DigitCounterT raking_grid[BLOCK_THREADS][PADDED_RAKING_SEGMENT];
} aliasable;
};
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
public:
/// \smemstorage{BlockScan}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockRadixRankMatch(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Raking
*********************************************************************/
//@{
/**
* \brief Rank keys.
*/
template <
typename UnsignedBits,
int KEYS_PER_THREAD>
__device__ __forceinline__ void RankKeys(
UnsignedBits (&keys)[KEYS_PER_THREAD], ///< [in] Keys for this tile
int (&ranks)[KEYS_PER_THREAD], ///< [out] For each key, the local rank within the tile
int current_bit, ///< [in] The least-significant bit position of the current digit to extract
int num_bits) ///< [in] The number of bits in the current digit
{
// Initialize shared digit counters
#pragma unroll
for (int ITEM = 0; ITEM < PADDED_RAKING_SEGMENT; ++ITEM)
temp_storage.aliasable.raking_grid[linear_tid][ITEM] = 0;
CTA_SYNC();
// Each warp will strip-mine its section of input, one strip at a time
volatile DigitCounterT *digit_counters[KEYS_PER_THREAD];
uint32_t warp_id = linear_tid >> LOG_WARP_THREADS;
uint32_t lane_mask_lt = LaneMaskLt();
#pragma unroll
for (int ITEM = 0; ITEM < KEYS_PER_THREAD; ++ITEM)
{
// My digit
uint32_t digit = BFE(keys[ITEM], current_bit, num_bits);
if (IS_DESCENDING)
digit = RADIX_DIGITS - digit - 1;
// Mask of peers who have same digit as me
uint32_t peer_mask = MatchAny<RADIX_BITS>(digit);
// Pointer to smem digit counter for this key
digit_counters[ITEM] = &temp_storage.aliasable.warp_digit_counters[digit][warp_id];
// Number of occurrences in previous strips
DigitCounterT warp_digit_prefix = *digit_counters[ITEM];
// Warp-sync
WARP_SYNC(0xFFFFFFFF);
// Number of peers having same digit as me
int32_t digit_count = __popc(peer_mask);
// Number of lower-ranked peers having same digit seen so far
int32_t peer_digit_prefix = __popc(peer_mask & lane_mask_lt);
if (peer_digit_prefix == 0)
{
// First thread for each digit updates the shared warp counter
*digit_counters[ITEM] = DigitCounterT(warp_digit_prefix + digit_count);
}
// Warp-sync
WARP_SYNC(0xFFFFFFFF);
// Number of prior keys having same digit
ranks[ITEM] = warp_digit_prefix + DigitCounterT(peer_digit_prefix);
}
CTA_SYNC();
// Scan warp counters
DigitCounterT scan_counters[PADDED_RAKING_SEGMENT];
#pragma unroll
for (int ITEM = 0; ITEM < PADDED_RAKING_SEGMENT; ++ITEM)
scan_counters[ITEM] = temp_storage.aliasable.raking_grid[linear_tid][ITEM];
BlockScanT(temp_storage.block_scan).ExclusiveSum(scan_counters, scan_counters);
#pragma unroll
for (int ITEM = 0; ITEM < PADDED_RAKING_SEGMENT; ++ITEM)
temp_storage.aliasable.raking_grid[linear_tid][ITEM] = scan_counters[ITEM];
CTA_SYNC();
// Seed ranks with counter values from previous warps
#pragma unroll
for (int ITEM = 0; ITEM < KEYS_PER_THREAD; ++ITEM)
ranks[ITEM] += *digit_counters[ITEM];
}
/**
* \brief Rank keys. For the lower \p RADIX_DIGITS threads, digit counts for each digit are provided for the corresponding thread.
*/
template <
typename UnsignedBits,
int KEYS_PER_THREAD>
__device__ __forceinline__ void RankKeys(
UnsignedBits (&keys)[KEYS_PER_THREAD], ///< [in] Keys for this tile
int (&ranks)[KEYS_PER_THREAD], ///< [out] For each key, the local rank within the tile (out parameter)
int current_bit, ///< [in] The least-significant bit position of the current digit to extract
int num_bits, ///< [in] The number of bits in the current digit
int (&exclusive_digit_prefix)[BINS_TRACKED_PER_THREAD]) ///< [out] The exclusive prefix sum for the digits [(threadIdx.x * BINS_TRACKED_PER_THREAD) ... (threadIdx.x * BINS_TRACKED_PER_THREAD) + BINS_TRACKED_PER_THREAD - 1]
{
RankKeys(keys, ranks, current_bit, num_bits);
// Get exclusive count for each digit
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
int bin_idx = (linear_tid * BINS_TRACKED_PER_THREAD) + track;
if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
{
if (IS_DESCENDING)
bin_idx = RADIX_DIGITS - bin_idx - 1;
exclusive_digit_prefix[track] = temp_storage.aliasable.warp_digit_counters[bin_idx][0];
}
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|