Spaces:
Runtime error
Runtime error
File size: 38,306 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* The cub::BlockRadixSort class provides [<em>collective</em>](index.html#sec0) methods for radix sorting of items partitioned across a CUDA thread block.
*/
#pragma once
#include "block_exchange.cuh"
#include "block_radix_rank.cuh"
#include "../config.cuh"
#include "../util_ptx.cuh"
#include "../util_type.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief The BlockRadixSort class provides [<em>collective</em>](index.html#sec0) methods for sorting items partitioned across a CUDA thread block using a radix sorting method. ![](sorting_logo.png)
* \ingroup BlockModule
*
* \tparam KeyT KeyT type
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ITEMS_PER_THREAD The number of items per thread
* \tparam ValueT <b>[optional]</b> ValueT type (default: cub::NullType, which indicates a keys-only sort)
* \tparam RADIX_BITS <b>[optional]</b> The number of radix bits per digit place (default: 4 bits)
* \tparam MEMOIZE_OUTER_SCAN <b>[optional]</b> Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure (default: true for architectures SM35 and newer, false otherwise).
* \tparam INNER_SCAN_ALGORITHM <b>[optional]</b> The cub::BlockScanAlgorithm algorithm to use (default: cub::BLOCK_SCAN_WARP_SCANS)
* \tparam SMEM_CONFIG <b>[optional]</b> Shared memory bank mode (default: \p cudaSharedMemBankSizeFourByte)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* - The [<em>radix sorting method</em>](http://en.wikipedia.org/wiki/Radix_sort) arranges
* items into ascending order. It relies upon a positional representation for
* keys, i.e., each key is comprised of an ordered sequence of symbols (e.g., digits,
* characters, etc.) specified from least-significant to most-significant. For a
* given input sequence of keys and a set of rules specifying a total ordering
* of the symbolic alphabet, the radix sorting method produces a lexicographic
* ordering of those keys.
* - BlockRadixSort can sort all of the built-in C++ numeric primitive types
* (<tt>unsigned char</tt>, \p int, \p double, etc.) as well as CUDA's \p __half
* half-precision floating-point type. Within each key, the implementation treats fixed-length
* bit-sequences of \p RADIX_BITS as radix digit places. Although the direct radix sorting
* method can only be applied to unsigned integral types, BlockRadixSort
* is able to sort signed and floating-point types via simple bit-wise transformations
* that ensure lexicographic key ordering.
* - \rowmajor
*
* \par Performance Considerations
* - \granularity
*
* \par A Simple Example
* \blockcollective{BlockRadixSort}
* \par
* The code snippet below illustrates a sort of 512 integer keys that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).Sort(thread_keys);
*
* ...
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], [8,9,10,11], ..., [508,509,510,511] }</tt>.
*
*/
template <
typename KeyT,
int BLOCK_DIM_X,
int ITEMS_PER_THREAD,
typename ValueT = NullType,
int RADIX_BITS = 4,
bool MEMOIZE_OUTER_SCAN = (CUB_PTX_ARCH >= 350) ? true : false,
BlockScanAlgorithm INNER_SCAN_ALGORITHM = BLOCK_SCAN_WARP_SCANS,
cudaSharedMemConfig SMEM_CONFIG = cudaSharedMemBankSizeFourByte,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockRadixSort
{
private:
/******************************************************************************
* Constants and type definitions
******************************************************************************/
enum
{
// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
// Whether or not there are values to be trucked along with keys
KEYS_ONLY = Equals<ValueT, NullType>::VALUE,
};
// KeyT traits and unsigned bits type
typedef Traits<KeyT> KeyTraits;
typedef typename KeyTraits::UnsignedBits UnsignedBits;
/// Ascending BlockRadixRank utility type
typedef BlockRadixRank<
BLOCK_DIM_X,
RADIX_BITS,
false,
MEMOIZE_OUTER_SCAN,
INNER_SCAN_ALGORITHM,
SMEM_CONFIG,
BLOCK_DIM_Y,
BLOCK_DIM_Z,
PTX_ARCH>
AscendingBlockRadixRank;
/// Descending BlockRadixRank utility type
typedef BlockRadixRank<
BLOCK_DIM_X,
RADIX_BITS,
true,
MEMOIZE_OUTER_SCAN,
INNER_SCAN_ALGORITHM,
SMEM_CONFIG,
BLOCK_DIM_Y,
BLOCK_DIM_Z,
PTX_ARCH>
DescendingBlockRadixRank;
/// BlockExchange utility type for keys
typedef BlockExchange<KeyT, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchangeKeys;
/// BlockExchange utility type for values
typedef BlockExchange<ValueT, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchangeValues;
/// Shared memory storage layout type
union _TempStorage
{
typename AscendingBlockRadixRank::TempStorage asending_ranking_storage;
typename DescendingBlockRadixRank::TempStorage descending_ranking_storage;
typename BlockExchangeKeys::TempStorage exchange_keys;
typename BlockExchangeValues::TempStorage exchange_values;
};
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/// Rank keys (specialized for ascending sort)
__device__ __forceinline__ void RankKeys(
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
int begin_bit,
int pass_bits,
Int2Type<false> /*is_descending*/)
{
AscendingBlockRadixRank(temp_storage.asending_ranking_storage).RankKeys(
unsigned_keys,
ranks,
begin_bit,
pass_bits);
}
/// Rank keys (specialized for descending sort)
__device__ __forceinline__ void RankKeys(
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
int begin_bit,
int pass_bits,
Int2Type<true> /*is_descending*/)
{
DescendingBlockRadixRank(temp_storage.descending_ranking_storage).RankKeys(
unsigned_keys,
ranks,
begin_bit,
pass_bits);
}
/// ExchangeValues (specialized for key-value sort, to-blocked arrangement)
__device__ __forceinline__ void ExchangeValues(
ValueT (&values)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
Int2Type<false> /*is_keys_only*/,
Int2Type<true> /*is_blocked*/)
{
CTA_SYNC();
// Exchange values through shared memory in blocked arrangement
BlockExchangeValues(temp_storage.exchange_values).ScatterToBlocked(values, ranks);
}
/// ExchangeValues (specialized for key-value sort, to-striped arrangement)
__device__ __forceinline__ void ExchangeValues(
ValueT (&values)[ITEMS_PER_THREAD],
int (&ranks)[ITEMS_PER_THREAD],
Int2Type<false> /*is_keys_only*/,
Int2Type<false> /*is_blocked*/)
{
CTA_SYNC();
// Exchange values through shared memory in blocked arrangement
BlockExchangeValues(temp_storage.exchange_values).ScatterToStriped(values, ranks);
}
/// ExchangeValues (specialized for keys-only sort)
template <int IS_BLOCKED>
__device__ __forceinline__ void ExchangeValues(
ValueT (&/*values*/)[ITEMS_PER_THREAD],
int (&/*ranks*/)[ITEMS_PER_THREAD],
Int2Type<true> /*is_keys_only*/,
Int2Type<IS_BLOCKED> /*is_blocked*/)
{}
/// Sort blocked arrangement
template <int DESCENDING, int KEYS_ONLY>
__device__ __forceinline__ void SortBlocked(
KeyT (&keys)[ITEMS_PER_THREAD], ///< Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< Values to sort
int begin_bit, ///< The beginning (least-significant) bit index needed for key comparison
int end_bit, ///< The past-the-end (most-significant) bit index needed for key comparison
Int2Type<DESCENDING> is_descending, ///< Tag whether is a descending-order sort
Int2Type<KEYS_ONLY> is_keys_only) ///< Tag whether is keys-only sort
{
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD] =
reinterpret_cast<UnsignedBits (&)[ITEMS_PER_THREAD]>(keys);
// Twiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleIn(unsigned_keys[KEY]);
}
// Radix sorting passes
while (true)
{
int pass_bits = CUB_MIN(RADIX_BITS, end_bit - begin_bit);
// Rank the blocked keys
int ranks[ITEMS_PER_THREAD];
RankKeys(unsigned_keys, ranks, begin_bit, pass_bits, is_descending);
begin_bit += RADIX_BITS;
CTA_SYNC();
// Exchange keys through shared memory in blocked arrangement
BlockExchangeKeys(temp_storage.exchange_keys).ScatterToBlocked(keys, ranks);
// Exchange values through shared memory in blocked arrangement
ExchangeValues(values, ranks, is_keys_only, Int2Type<true>());
// Quit if done
if (begin_bit >= end_bit) break;
CTA_SYNC();
}
// Untwiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleOut(unsigned_keys[KEY]);
}
}
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
/// Sort blocked -> striped arrangement
template <int DESCENDING, int KEYS_ONLY>
__device__ __forceinline__ void SortBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< Values to sort
int begin_bit, ///< The beginning (least-significant) bit index needed for key comparison
int end_bit, ///< The past-the-end (most-significant) bit index needed for key comparison
Int2Type<DESCENDING> is_descending, ///< Tag whether is a descending-order sort
Int2Type<KEYS_ONLY> is_keys_only) ///< Tag whether is keys-only sort
{
UnsignedBits (&unsigned_keys)[ITEMS_PER_THREAD] =
reinterpret_cast<UnsignedBits (&)[ITEMS_PER_THREAD]>(keys);
// Twiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleIn(unsigned_keys[KEY]);
}
// Radix sorting passes
while (true)
{
int pass_bits = CUB_MIN(RADIX_BITS, end_bit - begin_bit);
// Rank the blocked keys
int ranks[ITEMS_PER_THREAD];
RankKeys(unsigned_keys, ranks, begin_bit, pass_bits, is_descending);
begin_bit += RADIX_BITS;
CTA_SYNC();
// Check if this is the last pass
if (begin_bit >= end_bit)
{
// Last pass exchanges keys through shared memory in striped arrangement
BlockExchangeKeys(temp_storage.exchange_keys).ScatterToStriped(keys, ranks);
// Last pass exchanges through shared memory in striped arrangement
ExchangeValues(values, ranks, is_keys_only, Int2Type<false>());
// Quit
break;
}
// Exchange keys through shared memory in blocked arrangement
BlockExchangeKeys(temp_storage.exchange_keys).ScatterToBlocked(keys, ranks);
// Exchange values through shared memory in blocked arrangement
ExchangeValues(values, ranks, is_keys_only, Int2Type<true>());
CTA_SYNC();
}
// Untwiddle bits if necessary
#pragma unroll
for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
{
unsigned_keys[KEY] = KeyTraits::TwiddleOut(unsigned_keys[KEY]);
}
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
/// \smemstorage{BlockRadixSort}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockRadixSort()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockRadixSort(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Sorting (blocked arrangements)
*********************************************************************/
//@{
/**
* \brief Performs an ascending block-wide radix sort over a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).Sort(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>.
* The corresponding output \p thread_keys in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], [8,9,10,11], ..., [508,509,510,511] }</tt>.
*/
__device__ __forceinline__ void Sort(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs an ascending block-wide radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values.
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).Sort(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], [8,9,10,11], ..., [508,509,510,511] }</tt>.
*
*/
__device__ __forceinline__ void Sort(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending block-wide radix sort over a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).Sort(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>.
* The corresponding output \p thread_keys in those threads will be
* <tt>{ [511,510,509,508], [11,10,9,8], [7,6,5,4], ..., [3,2,1,0] }</tt>.
*/
__device__ __forceinline__ void SortDescending(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending block-wide radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values.
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).Sort(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [511,510,509,508], [11,10,9,8], [7,6,5,4], ..., [3,2,1,0] }</tt>.
*
*/
__device__ __forceinline__ void SortDescending(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlocked(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
//@} end member group
/******************************************************************//**
* \name Sorting (blocked arrangement -> striped arrangement)
*********************************************************************/
//@{
/**
* \brief Performs an ascending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,128,256,384], [1,129,257,385], [2,130,258,386], ..., [127,255,383,511] }</tt>.
*
*/
__device__ __forceinline__ void SortBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs an ascending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [0,128,256,384], [1,129,257,385], [2,130,258,386], ..., [127,255,383,511] }</tt>.
*
*/
__device__ __forceinline__ void SortBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<false>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive keys. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys each
* typedef cub::BlockRadixSort<int, 128, 4> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* ...
*
* // Collectively sort the keys
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [511,383,255,127], [386,258,130,2], [385,257,128,1], ..., [384,256,128,0] }</tt>.
*
*/
__device__ __forceinline__ void SortDescendingBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
NullType values[ITEMS_PER_THREAD];
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
/**
* \brief Performs a descending radix sort across a [<em>blocked arrangement</em>](index.html#sec5sec3) of keys and values, leaving them in a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par
* - BlockRadixSort can only accommodate one associated tile of values. To "truck along"
* more than one tile of values, simply perform a key-value sort of the keys paired
* with a temporary value array that enumerates the key indices. The reordered indices
* can then be used as a gather-vector for exchanging other associated tile data through
* shared memory.
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a sort of 512 integer keys and values that
* are initially partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive pairs. The final partitioning is striped.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_radix_sort.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockRadixSort for a 1D block of 128 threads owning 4 integer keys and values each
* typedef cub::BlockRadixSort<int, 128, 4, int> BlockRadixSort;
*
* // Allocate shared memory for BlockRadixSort
* __shared__ typename BlockRadixSort::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_keys[4];
* int thread_values[4];
* ...
*
* // Collectively sort the keys and values among block threads
* BlockRadixSort(temp_storage).SortBlockedToStriped(thread_keys, thread_values);
*
* \endcode
* \par
* Suppose the set of input \p thread_keys across the block of threads is
* <tt>{ [0,511,1,510], [2,509,3,508], [4,507,5,506], ..., [254,257,255,256] }</tt>. The
* corresponding output \p thread_keys in those threads will be
* <tt>{ [511,383,255,127], [386,258,130,2], [385,257,128,1], ..., [384,256,128,0] }</tt>.
*
*/
__device__ __forceinline__ void SortDescendingBlockedToStriped(
KeyT (&keys)[ITEMS_PER_THREAD], ///< [in-out] Keys to sort
ValueT (&values)[ITEMS_PER_THREAD], ///< [in-out] Values to sort
int begin_bit = 0, ///< [in] <b>[optional]</b> The beginning (least-significant) bit index needed for key comparison
int end_bit = sizeof(KeyT) * 8) ///< [in] <b>[optional]</b> The past-the-end (most-significant) bit index needed for key comparison
{
SortBlockedToStriped(keys, values, begin_bit, end_bit, Int2Type<true>(), Int2Type<KEYS_ONLY>());
}
//@} end member group
};
/**
* \example example_block_radix_sort.cu
*/
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|