File size: 42,348 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * cub::DeviceRadixSort provides device-wide, parallel operations for computing a radix sort across a sequence of data items residing within device-accessible memory.
 */

#pragma once

#include <stdio.h>
#include <iterator>

#include "dispatch/dispatch_radix_sort.cuh"
#include "../config.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/**
 * \brief DeviceRadixSort provides device-wide, parallel operations for computing a radix sort across a sequence of data items residing within device-accessible memory. ![](sorting_logo.png)
 * \ingroup SingleModule
 *
 * \par Overview
 * The [<em>radix sorting method</em>](http://en.wikipedia.org/wiki/Radix_sort) arranges
 * items into ascending (or descending) order.  The algorithm relies upon a positional representation for
 * keys, i.e., each key is comprised of an ordered sequence of symbols (e.g., digits,
 * characters, etc.) specified from least-significant to most-significant.  For a
 * given input sequence of keys and a set of rules specifying a total ordering
 * of the symbolic alphabet, the radix sorting method produces a lexicographic
 * ordering of those keys.
 *
 * \par
 * DeviceRadixSort can sort all of the built-in C++ numeric primitive types
 * (<tt>unsigned char</tt>, \p int, \p double, etc.) as well as CUDA's \p __half
 * half-precision floating-point type.  Although the direct radix sorting
 * method can only be applied to unsigned integral types, DeviceRadixSort
 * is able to sort signed and floating-point types via simple bit-wise transformations
 * that ensure lexicographic key ordering.
 *
 * \par Usage Considerations
 * \cdp_class{DeviceRadixSort}
 *
 * \par Performance
 * \linear_performance{radix sort} The following chart illustrates DeviceRadixSort::SortKeys
 * performance across different CUDA architectures for uniform-random \p uint32 keys.
 * \plots_below
 *
 * \image html lsb_radix_sort_int32_keys.png
 *
 */
struct DeviceRadixSort
{

    /******************************************************************//**
     * \name KeyT-value pairs
     *********************************************************************/
    //@{

    /**
     * \brief Sorts key-value pairs into ascending order. (~<em>2N </em>auxiliary storage required)
     *
     * \par
     * - The contents of the input data are not altered by the sorting operation
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageNP  For sorting using only <em>O</em>(<tt>P</tt>) temporary storage, see the sorting interface using DoubleBuffer wrappers below.
     * - \devicestorage
     *
     * \par Performance
     * The following charts illustrate saturated sorting performance across different
     * CUDA architectures for uniform-random <tt>uint32,uint32</tt> and
     * <tt>uint64,uint64</tt> pairs, respectively.
     *
     * \image html lsb_radix_sort_int32_pairs.png
     * \image html lsb_radix_sort_int64_pairs.png
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys
     * with associated vector of \p int values.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_keys_in;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_keys_out;        // e.g., [        ...        ]
     * int  *d_values_in;       // e.g., [0, 1, 2, 3, 4, 5, 6]
     * int  *d_values_out;      // e.g., [        ...        ]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes,
     *     d_keys_in, d_keys_out, d_values_in, d_values_out, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes,
     *     d_keys_in, d_keys_out, d_values_in, d_values_out, num_items);
     *
     * // d_keys_out            <-- [0, 3, 5, 6, 7, 8, 9]
     * // d_values_out          <-- [5, 4, 3, 1, 2, 0, 6]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     * \tparam ValueT    <b>[inferred]</b> ValueT type
     */
    template <
        typename            KeyT,
        typename            ValueT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortPairs(
        void                *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t              &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        const KeyT          *d_keys_in,                             ///< [in] Pointer to the input data of key data to sort
        KeyT                *d_keys_out,                            ///< [out] Pointer to the sorted output sequence of key data
        const ValueT        *d_values_in,                           ///< [in] Pointer to the corresponding input sequence of associated value items
        ValueT              *d_values_out,                          ///< [out] Pointer to the correspondingly-reordered output sequence of associated value items
        int                 num_items,                              ///< [in] Number of items to sort
        int                 begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                 end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t        stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        DoubleBuffer<KeyT>       d_keys(const_cast<KeyT*>(d_keys_in), d_keys_out);
        DoubleBuffer<ValueT>     d_values(const_cast<ValueT*>(d_values_in), d_values_out);

        return DispatchRadixSort<false, KeyT, ValueT, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            false,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Sorts key-value pairs into ascending order. (~<em>N </em>auxiliary storage required)
     *
     * \par
     * - The sorting operation is given a pair of key buffers and a corresponding
     *   pair of associated value buffers.  Each pair is managed by a DoubleBuffer
     *   structure that indicates which of the two buffers is "current" (and thus
     *   contains the input data to be sorted).
     * - The contents of both buffers within each pair may be altered by the sorting
     *   operation.
     * - Upon completion, the sorting operation will update the "current" indicator
     *   within each DoubleBuffer wrapper to reference which of the two buffers
     *   now contains the sorted output sequence (a function of the number of key bits
     *   specified and the targeted device architecture).
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageP
     * - \devicestorage
     *
     * \par Performance
     * The following charts illustrate saturated sorting performance across different
     * CUDA architectures for uniform-random <tt>uint32,uint32</tt> and
     * <tt>uint64,uint64</tt> pairs, respectively.
     *
     * \image html lsb_radix_sort_int32_pairs.png
     * \image html lsb_radix_sort_int64_pairs.png
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys
     * with associated vector of \p int values.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_key_buf;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_key_alt_buf;     // e.g., [        ...        ]
     * int  *d_value_buf;       // e.g., [0, 1, 2, 3, 4, 5, 6]
     * int  *d_value_alt_buf;   // e.g., [        ...        ]
     * ...
     *
     * // Create a set of DoubleBuffers to wrap pairs of device pointers
     * cub::DoubleBuffer<int> d_keys(d_key_buf, d_key_alt_buf);
     * cub::DoubleBuffer<int> d_values(d_value_buf, d_value_alt_buf);
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, d_keys, d_values, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, d_keys, d_values, num_items);
     *
     * // d_keys.Current()      <-- [0, 3, 5, 6, 7, 8, 9]
     * // d_values.Current()    <-- [5, 4, 3, 1, 2, 0, 6]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     * \tparam ValueT    <b>[inferred]</b> ValueT type
     */
    template <
        typename            KeyT,
        typename            ValueT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortPairs(
        void                    *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                  &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        DoubleBuffer<KeyT>      &d_keys,                                ///< [in,out] Reference to the double-buffer of keys whose "current" device-accessible buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
        DoubleBuffer<ValueT>    &d_values,                              ///< [in,out] Double-buffer of values whose "current" device-accessible buffer contains the unsorted input values and, upon return, is updated to point to the sorted output values
        int                     num_items,                              ///< [in] Number of items to sort
        int                     begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                     end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t            stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                    debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        return DispatchRadixSort<false, KeyT, ValueT, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            true,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Sorts key-value pairs into descending order. (~<em>2N</em> auxiliary storage required).
     *
     * \par
     * - The contents of the input data are not altered by the sorting operation
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageNP  For sorting using only <em>O</em>(<tt>P</tt>) temporary storage, see the sorting interface using DoubleBuffer wrappers below.
     * - \devicestorage
     *
     * \par Performance
     * Performance is similar to DeviceRadixSort::SortPairs.
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys
     * with associated vector of \p int values.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_keys_in;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_keys_out;        // e.g., [        ...        ]
     * int  *d_values_in;       // e.g., [0, 1, 2, 3, 4, 5, 6]
     * int  *d_values_out;      // e.g., [        ...        ]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes,
     *     d_keys_in, d_keys_out, d_values_in, d_values_out, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes,
     *     d_keys_in, d_keys_out, d_values_in, d_values_out, num_items);
     *
     * // d_keys_out            <-- [9, 8, 7, 6, 5, 3, 0]
     * // d_values_out          <-- [6, 0, 2, 1, 3, 4, 5]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     * \tparam ValueT    <b>[inferred]</b> ValueT type
     */
    template <
        typename            KeyT,
        typename            ValueT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortPairsDescending(
        void                *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t              &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        const KeyT          *d_keys_in,                             ///< [in] Pointer to the input data of key data to sort
        KeyT                *d_keys_out,                            ///< [out] Pointer to the sorted output sequence of key data
        const ValueT        *d_values_in,                           ///< [in] Pointer to the corresponding input sequence of associated value items
        ValueT              *d_values_out,                          ///< [out] Pointer to the correspondingly-reordered output sequence of associated value items
        int                 num_items,                              ///< [in] Number of items to sort
        int                 begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                 end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t        stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        DoubleBuffer<KeyT>       d_keys(const_cast<KeyT*>(d_keys_in), d_keys_out);
        DoubleBuffer<ValueT>     d_values(const_cast<ValueT*>(d_values_in), d_values_out);

        return DispatchRadixSort<true, KeyT, ValueT, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            false,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Sorts key-value pairs into descending order. (~<em>N </em>auxiliary storage required).
     *
     * \par
     * - The sorting operation is given a pair of key buffers and a corresponding
     *   pair of associated value buffers.  Each pair is managed by a DoubleBuffer
     *   structure that indicates which of the two buffers is "current" (and thus
     *   contains the input data to be sorted).
     * - The contents of both buffers within each pair may be altered by the sorting
     *   operation.
     * - Upon completion, the sorting operation will update the "current" indicator
     *   within each DoubleBuffer wrapper to reference which of the two buffers
     *   now contains the sorted output sequence (a function of the number of key bits
     *   specified and the targeted device architecture).
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageP
     * - \devicestorage
     *
     * \par Performance
     * Performance is similar to DeviceRadixSort::SortPairs.
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys
     * with associated vector of \p int values.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_key_buf;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_key_alt_buf;     // e.g., [        ...        ]
     * int  *d_value_buf;       // e.g., [0, 1, 2, 3, 4, 5, 6]
     * int  *d_value_alt_buf;   // e.g., [        ...        ]
     * ...
     *
     * // Create a set of DoubleBuffers to wrap pairs of device pointers
     * cub::DoubleBuffer<int> d_keys(d_key_buf, d_key_alt_buf);
     * cub::DoubleBuffer<int> d_values(d_value_buf, d_value_alt_buf);
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, d_keys, d_values, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, d_keys, d_values, num_items);
     *
     * // d_keys.Current()      <-- [9, 8, 7, 6, 5, 3, 0]
     * // d_values.Current()    <-- [6, 0, 2, 1, 3, 4, 5]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     * \tparam ValueT    <b>[inferred]</b> ValueT type
     */
    template <
        typename            KeyT,
        typename            ValueT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortPairsDescending(
        void                    *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                  &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        DoubleBuffer<KeyT>      &d_keys,                                ///< [in,out] Reference to the double-buffer of keys whose "current" device-accessible buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
        DoubleBuffer<ValueT>    &d_values,                              ///< [in,out] Double-buffer of values whose "current" device-accessible buffer contains the unsorted input values and, upon return, is updated to point to the sorted output values
        int                     num_items,                              ///< [in] Number of items to sort
        int                     begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                     end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t            stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                    debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        return DispatchRadixSort<true, KeyT, ValueT, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            true,
            stream,
            debug_synchronous);
    }


    //@}  end member group
    /******************************************************************//**
     * \name Keys-only
     *********************************************************************/
    //@{


    /**
     * \brief Sorts keys into ascending order. (~<em>2N </em>auxiliary storage required)
     *
     * \par
     * - The contents of the input data are not altered by the sorting operation
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageNP  For sorting using only <em>O</em>(<tt>P</tt>) temporary storage, see the sorting interface using DoubleBuffer wrappers below.
     * - \devicestorage
     *
     * \par Performance
     * The following charts illustrate saturated sorting performance across different
     * CUDA architectures for uniform-random \p uint32 and \p uint64 keys, respectively.
     *
     * \image html lsb_radix_sort_int32_keys.png
     * \image html lsb_radix_sort_int64_keys.png
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_keys_in;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_keys_out;        // e.g., [        ...        ]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortKeys(d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortKeys(d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, num_items);
     *
     * // d_keys_out            <-- [0, 3, 5, 6, 7, 8, 9]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     */
    template <typename KeyT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortKeys(
        void                *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t              &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        const KeyT          *d_keys_in,                             ///< [in] Pointer to the input data of key data to sort
        KeyT                *d_keys_out,                            ///< [out] Pointer to the sorted output sequence of key data
        int                 num_items,                              ///< [in] Number of items to sort
        int                 begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                 end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t        stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // Null value type
        DoubleBuffer<KeyT>      d_keys(const_cast<KeyT*>(d_keys_in), d_keys_out);
        DoubleBuffer<NullType>  d_values;

        return DispatchRadixSort<false, KeyT, NullType, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            false,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Sorts keys into ascending order. (~<em>N </em>auxiliary storage required).
     *
     * \par
     * - The sorting operation is given a pair of key buffers managed by a
     *   DoubleBuffer structure that indicates which of the two buffers is
     *   "current" (and thus contains the input data to be sorted).
     * - The contents of both buffers may be altered by the sorting operation.
     * - Upon completion, the sorting operation will update the "current" indicator
     *   within the DoubleBuffer wrapper to reference which of the two buffers
     *   now contains the sorted output sequence (a function of the number of key bits
     *   specified and the targeted device architecture).
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageP
     * - \devicestorage
     *
     * \par Performance
     * The following charts illustrate saturated sorting performance across different
     * CUDA architectures for uniform-random \p uint32 and \p uint64 keys, respectively.
     *
     * \image html lsb_radix_sort_int32_keys.png
     * \image html lsb_radix_sort_int64_keys.png
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_key_buf;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_key_alt_buf;     // e.g., [        ...        ]
     * ...
     *
     * // Create a DoubleBuffer to wrap the pair of device pointers
     * cub::DoubleBuffer<int> d_keys(d_key_buf, d_key_alt_buf);
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortKeys(d_temp_storage, temp_storage_bytes, d_keys, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortKeys(d_temp_storage, temp_storage_bytes, d_keys, num_items);
     *
     * // d_keys.Current()      <-- [0, 3, 5, 6, 7, 8, 9]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     */
    template <typename KeyT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortKeys(
        void                *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t              &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        DoubleBuffer<KeyT>  &d_keys,                                ///< [in,out] Reference to the double-buffer of keys whose "current" device-accessible buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
        int                 num_items,                              ///< [in] Number of items to sort
        int                 begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                 end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t        stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // Null value type
        DoubleBuffer<NullType> d_values;

        return DispatchRadixSort<false, KeyT, NullType, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            true,
            stream,
            debug_synchronous);
    }

    /**
     * \brief Sorts keys into descending order. (~<em>2N</em> auxiliary storage required).
     *
     * \par
     * - The contents of the input data are not altered by the sorting operation
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageNP  For sorting using only <em>O</em>(<tt>P</tt>) temporary storage, see the sorting interface using DoubleBuffer wrappers below.
     * - \devicestorage
     *
     * \par Performance
     * Performance is similar to DeviceRadixSort::SortKeys.
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_keys_in;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_keys_out;        // e.g., [        ...        ]
     * ...
     *
     * // Create a DoubleBuffer to wrap the pair of device pointers
     * cub::DoubleBuffer<int> d_keys(d_key_buf, d_key_alt_buf);
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortKeysDescending(d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortKeysDescending(d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, num_items);
     *
     * // d_keys_out            <-- [9, 8, 7, 6, 5, 3, 0]s
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     */
    template <typename KeyT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortKeysDescending(
        void                *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t              &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        const KeyT          *d_keys_in,                             ///< [in] Pointer to the input data of key data to sort
        KeyT                *d_keys_out,                            ///< [out] Pointer to the sorted output sequence of key data
        int                 num_items,                              ///< [in] Number of items to sort
        int                 begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                 end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t        stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        DoubleBuffer<KeyT>      d_keys(const_cast<KeyT*>(d_keys_in), d_keys_out);
        DoubleBuffer<NullType>  d_values;

        return DispatchRadixSort<true, KeyT, NullType, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            false,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Sorts keys into descending order. (~<em>N </em>auxiliary storage required).
     *
     * \par
     * - The sorting operation is given a pair of key buffers managed by a
     *   DoubleBuffer structure that indicates which of the two buffers is
     *   "current" (and thus contains the input data to be sorted).
     * - The contents of both buffers may be altered by the sorting operation.
     * - Upon completion, the sorting operation will update the "current" indicator
     *   within the DoubleBuffer wrapper to reference which of the two buffers
     *   now contains the sorted output sequence (a function of the number of key bits
     *   specified and the targeted device architecture).
     * - An optional bit subrange <tt>[begin_bit, end_bit)</tt> of differentiating key bits can be specified.  This can reduce overall sorting overhead and yield a corresponding performance improvement.
     * - \devicestorageP
     * - \devicestorage
     *
     * \par Performance
     * Performance is similar to DeviceRadixSort::SortKeys.
     *
     * \par Snippet
     * The code snippet below illustrates the sorting of a device vector of \p int keys.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for sorting data
     * int  num_items;          // e.g., 7
     * int  *d_key_buf;         // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_key_alt_buf;     // e.g., [        ...        ]
     * ...
     *
     * // Create a DoubleBuffer to wrap the pair of device pointers
     * cub::DoubleBuffer<int> d_keys(d_key_buf, d_key_alt_buf);
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceRadixSort::SortKeysDescending(d_temp_storage, temp_storage_bytes, d_keys, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sorting operation
     * cub::DeviceRadixSort::SortKeysDescending(d_temp_storage, temp_storage_bytes, d_keys, num_items);
     *
     * // d_keys.Current()      <-- [9, 8, 7, 6, 5, 3, 0]
     *
     * \endcode
     *
     * \tparam KeyT      <b>[inferred]</b> KeyT type
     */
    template <typename KeyT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t SortKeysDescending(
        void                *d_temp_storage,                        ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t              &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        DoubleBuffer<KeyT>  &d_keys,                                ///< [in,out] Reference to the double-buffer of keys whose "current" device-accessible buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
        int                 num_items,                              ///< [in] Number of items to sort
        int                 begin_bit           = 0,                ///< [in] <b>[optional]</b> The least-significant bit index (inclusive)  needed for key comparison
        int                 end_bit             = sizeof(KeyT) * 8, ///< [in] <b>[optional]</b> The most-significant bit index (exclusive) needed for key comparison (e.g., sizeof(unsigned int) * 8)
        cudaStream_t        stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // Null value type
        DoubleBuffer<NullType> d_values;

        return DispatchRadixSort<true, KeyT, NullType, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys,
            d_values,
            num_items,
            begin_bit,
            end_bit,
            true,
            stream,
            debug_synchronous);
    }


    //@}  end member group


};

/**
 * \example example_device_radix_sort.cu
 */

}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)