File size: 38,896 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * cub::DeviceReduce provides device-wide, parallel operations for computing a reduction across a sequence of data items residing within device-accessible memory.
 */

#pragma once

#include <stdio.h>
#include <iterator>
#include <limits>

#include "../iterator/arg_index_input_iterator.cuh"
#include "dispatch/dispatch_reduce.cuh"
#include "dispatch/dispatch_reduce_by_key.cuh"
#include "../config.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/**
 * \brief DeviceReduce provides device-wide, parallel operations for computing a reduction across a sequence of data items residing within device-accessible memory. ![](reduce_logo.png)
 * \ingroup SingleModule
 *
 * \par Overview
 * A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>)
 * uses a binary combining operator to compute a single aggregate from a sequence of input elements.
 *
 * \par Usage Considerations
 * \cdp_class{DeviceReduce}
 *
 * \par Performance
 * \linear_performance{reduction, reduce-by-key, and run-length encode}
 *
 * \par
 * The following chart illustrates DeviceReduce::Sum
 * performance across different CUDA architectures for \p int32 keys.
 *
 * \image html reduce_int32.png
 *
 * \par
 * The following chart illustrates DeviceReduce::ReduceByKey (summation)
 * performance across different CUDA architectures for \p fp32
 * values.  Segments are identified by \p int32 keys, and have lengths uniformly sampled from [1,1000].
 *
 * \image html reduce_by_key_fp32_len_500.png
 *
 * \par
 * \plots_below
 *
 */
struct DeviceReduce
{
    /**
     * \brief Computes a device-wide reduction using the specified binary \p reduction_op functor and initial value \p init.
     *
     * \par
     * - Does not support binary reduction operators that are non-commutative.
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Snippet
     * The code snippet below illustrates a user-defined min-reduction of a device vector of \p int data elements.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // CustomMin functor
     * struct CustomMin
     * {
     *     template <typename T>
     *     __device__ __forceinline__
     *     T operator()(const T &a, const T &b) const {
     *         return (b < a) ? b : a;
     *     }
     * };
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int          num_items;  // e.g., 7
     * int          *d_in;      // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int          *d_out;     // e.g., [-]
     * CustomMin    min_op;
     * int          init;       // e.g., INT_MAX
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, min_op, init);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run reduction
     * cub::DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, min_op, init);
     *
     * // d_out <-- [0]
     *
     * \endcode
     *
     * \tparam InputIteratorT       <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
     * \tparam OutputIteratorT      <b>[inferred]</b> Output iterator type for recording the reduced aggregate \iterator
     * \tparam ReductionOpT         <b>[inferred]</b> Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt> 
     * \tparam T                    <b>[inferred]</b> Data element type that is convertible to the \p value type of \p InputIteratorT
     */
    template <
        typename                    InputIteratorT,
        typename                    OutputIteratorT,
        typename                    ReductionOpT,
        typename                    T>
    CUB_RUNTIME_FUNCTION
    static cudaError_t Reduce(
        void                        *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        InputIteratorT              d_in,                               ///< [in] Pointer to the input sequence of data items
        OutputIteratorT             d_out,                              ///< [out] Pointer to the output aggregate
        int                         num_items,                          ///< [in] Total number of input items (i.e., length of \p d_in)
        ReductionOpT                reduction_op,                       ///< [in] Binary reduction functor
        T                           init,                               ///< [in] Initial value of the reduction
        cudaStream_t                stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        return DispatchReduce<InputIteratorT, OutputIteratorT, OffsetT, ReductionOpT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_in,
            d_out,
            num_items,
            reduction_op,
            init,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Computes a device-wide sum using the addition (\p +) operator.
     *
     * \par
     * - Uses \p 0 as the initial value of the reduction.
     * - Does not support \p + operators that are non-commutative..
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Performance
     * The following charts illustrate saturated sum-reduction performance across different
     * CUDA architectures for \p int32 and \p int64 items, respectively.
     *
     * \image html reduce_int32.png
     * \image html reduce_int64.png
     *
     * \par Snippet
     * The code snippet below illustrates the sum-reduction of a device vector of \p int data elements.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int  num_items;      // e.g., 7
     * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_out;         // e.g., [-]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run sum-reduction
     * cub::DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
     *
     * // d_out <-- [38]
     *
     * \endcode
     *
     * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
     * \tparam OutputIteratorT    <b>[inferred]</b> Output iterator type for recording the reduced aggregate \iterator
     */
    template <
        typename                    InputIteratorT,
        typename                    OutputIteratorT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t Sum(
        void                        *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        InputIteratorT              d_in,                               ///< [in] Pointer to the input sequence of data items
        OutputIteratorT             d_out,                              ///< [out] Pointer to the output aggregate
        int                         num_items,                          ///< [in] Total number of input items (i.e., length of \p d_in)
        cudaStream_t                stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // The output value type
        typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
            typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
            typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

        return DispatchReduce<InputIteratorT, OutputIteratorT, OffsetT, cub::Sum>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_in,
            d_out,
            num_items,
            cub::Sum(),
            OutputT(),            // zero-initialize
            stream,
            debug_synchronous);
    }


    /**
     * \brief Computes a device-wide minimum using the less-than ('<') operator.
     *
     * \par
     * - Uses <tt>std::numeric_limits<T>::max()</tt> as the initial value of the reduction.
     * - Does not support \p < operators that are non-commutative.
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Snippet
     * The code snippet below illustrates the min-reduction of a device vector of \p int data elements.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int  num_items;      // e.g., 7
     * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_out;         // e.g., [-]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::Min(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run min-reduction
     * cub::DeviceReduce::Min(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
     *
     * // d_out <-- [0]
     *
     * \endcode
     *
     * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
     * \tparam OutputIteratorT    <b>[inferred]</b> Output iterator type for recording the reduced aggregate \iterator
     */
    template <
        typename                    InputIteratorT,
        typename                    OutputIteratorT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t Min(
        void                        *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        InputIteratorT              d_in,                               ///< [in] Pointer to the input sequence of data items
        OutputIteratorT             d_out,                              ///< [out] Pointer to the output aggregate
        int                         num_items,                          ///< [in] Total number of input items (i.e., length of \p d_in)
        cudaStream_t                stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // The input value type
        typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;

        return DispatchReduce<InputIteratorT, OutputIteratorT, OffsetT, cub::Min>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_in,
            d_out,
            num_items,
            cub::Min(),
            Traits<InputT>::Max(), // replace with std::numeric_limits<T>::max() when C++11 support is more prevalent
            stream,
            debug_synchronous);
    }


    /**
     * \brief Finds the first device-wide minimum using the less-than ('<') operator, also returning the index of that item.
     *
     * \par
     * - The output value type of \p d_out is cub::KeyValuePair <tt><int, T></tt> (assuming the value type of \p d_in is \p T)
     *   - The minimum is written to <tt>d_out.value</tt> and its offset in the input array is written to <tt>d_out.key</tt>.
     *   - The <tt>{1, std::numeric_limits<T>::max()}</tt> tuple is produced for zero-length inputs
     * - Does not support \p < operators that are non-commutative.
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Snippet
     * The code snippet below illustrates the argmin-reduction of a device vector of \p int data elements.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int                      num_items;      // e.g., 7
     * int                      *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
     * KeyValuePair<int, int>   *d_out;         // e.g., [{-,-}]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::ArgMin(d_temp_storage, temp_storage_bytes, d_in, d_argmin, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run argmin-reduction
     * cub::DeviceReduce::ArgMin(d_temp_storage, temp_storage_bytes, d_in, d_argmin, num_items);
     *
     * // d_out <-- [{5, 0}]
     *
     * \endcode
     *
     * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading input items (of some type \p T) \iterator
     * \tparam OutputIteratorT    <b>[inferred]</b> Output iterator type for recording the reduced aggregate (having value type <tt>cub::KeyValuePair<int, T></tt>) \iterator
     */
    template <
        typename                    InputIteratorT,
        typename                    OutputIteratorT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t ArgMin(
        void                        *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        InputIteratorT              d_in,                               ///< [in] Pointer to the input sequence of data items
        OutputIteratorT             d_out,                              ///< [out] Pointer to the output aggregate
        int                         num_items,                          ///< [in] Total number of input items (i.e., length of \p d_in)
        cudaStream_t                stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // The input type
        typedef typename std::iterator_traits<InputIteratorT>::value_type InputValueT;

        // The output tuple type
        typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
            KeyValuePair<OffsetT, InputValueT>,                                                                 // ... then the key value pair OffsetT + InputValueT
            typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputTupleT;                     // ... else the output iterator's value type

        // The output value type
        typedef typename OutputTupleT::Value OutputValueT;

        // Wrapped input iterator to produce index-value <OffsetT, InputT> tuples
        typedef ArgIndexInputIterator<InputIteratorT, OffsetT, OutputValueT> ArgIndexInputIteratorT;
        ArgIndexInputIteratorT d_indexed_in(d_in);

        // Initial value
        OutputTupleT initial_value(1, Traits<InputValueT>::Max());   // replace with std::numeric_limits<T>::max() when C++11 support is more prevalent

        return DispatchReduce<ArgIndexInputIteratorT, OutputIteratorT, OffsetT, cub::ArgMin>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_indexed_in,
            d_out,
            num_items,
            cub::ArgMin(),
            initial_value,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Computes a device-wide maximum using the greater-than ('>') operator.
     *
     * \par
     * - Uses <tt>std::numeric_limits<T>::lowest()</tt> as the initial value of the reduction.
     * - Does not support \p > operators that are non-commutative.
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Snippet
     * The code snippet below illustrates the max-reduction of a device vector of \p int data elements.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_radix_sort.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int  num_items;      // e.g., 7
     * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
     * int  *d_out;         // e.g., [-]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_in, d_max, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run max-reduction
     * cub::DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_in, d_max, num_items);
     *
     * // d_out <-- [9]
     *
     * \endcode
     *
     * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading input items \iterator
     * \tparam OutputIteratorT    <b>[inferred]</b> Output iterator type for recording the reduced aggregate \iterator
     */
    template <
        typename                    InputIteratorT,
        typename                    OutputIteratorT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t Max(
        void                        *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        InputIteratorT              d_in,                               ///< [in] Pointer to the input sequence of data items
        OutputIteratorT             d_out,                              ///< [out] Pointer to the output aggregate
        int                         num_items,                          ///< [in] Total number of input items (i.e., length of \p d_in)
        cudaStream_t                stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // The input value type
        typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;

        return DispatchReduce<InputIteratorT, OutputIteratorT, OffsetT, cub::Max>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_in,
            d_out,
            num_items,
            cub::Max(),
            Traits<InputT>::Lowest(),    // replace with std::numeric_limits<T>::lowest() when C++11 support is more prevalent
            stream,
            debug_synchronous);
    }


    /**
     * \brief Finds the first device-wide maximum using the greater-than ('>') operator, also returning the index of that item
     *
     * \par
     * - The output value type of \p d_out is cub::KeyValuePair <tt><int, T></tt> (assuming the value type of \p d_in is \p T)
     *   - The maximum is written to <tt>d_out.value</tt> and its offset in the input array is written to <tt>d_out.key</tt>.
     *   - The <tt>{1, std::numeric_limits<T>::lowest()}</tt> tuple is produced for zero-length inputs
     * - Does not support \p > operators that are non-commutative.
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Snippet
     * The code snippet below illustrates the argmax-reduction of a device vector of \p int data elements.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_reduce.cuh>
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int                      num_items;      // e.g., 7
     * int                      *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
     * KeyValuePair<int, int>   *d_out;         // e.g., [{-,-}]
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::ArgMax(d_temp_storage, temp_storage_bytes, d_in, d_argmax, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run argmax-reduction
     * cub::DeviceReduce::ArgMax(d_temp_storage, temp_storage_bytes, d_in, d_argmax, num_items);
     *
     * // d_out <-- [{6, 9}]
     *
     * \endcode
     *
     * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading input items (of some type \p T) \iterator
     * \tparam OutputIteratorT    <b>[inferred]</b> Output iterator type for recording the reduced aggregate (having value type <tt>cub::KeyValuePair<int, T></tt>) \iterator
     */
    template <
        typename                    InputIteratorT,
        typename                    OutputIteratorT>
    CUB_RUNTIME_FUNCTION
    static cudaError_t ArgMax(
        void                        *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        InputIteratorT              d_in,                               ///< [in] Pointer to the input sequence of data items
        OutputIteratorT             d_out,                              ///< [out] Pointer to the output aggregate
        int                         num_items,                          ///< [in] Total number of input items (i.e., length of \p d_in)
        cudaStream_t                stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // The input type
        typedef typename std::iterator_traits<InputIteratorT>::value_type InputValueT;

        // The output tuple type
        typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
            KeyValuePair<OffsetT, InputValueT>,                                                                 // ... then the key value pair OffsetT + InputValueT
            typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputTupleT;                     // ... else the output iterator's value type

        // The output value type
        typedef typename OutputTupleT::Value OutputValueT;

        // Wrapped input iterator to produce index-value <OffsetT, InputT> tuples
        typedef ArgIndexInputIterator<InputIteratorT, OffsetT, OutputValueT> ArgIndexInputIteratorT;
        ArgIndexInputIteratorT d_indexed_in(d_in);

        // Initial value
        OutputTupleT initial_value(1, Traits<InputValueT>::Lowest());     // replace with std::numeric_limits<T>::lowest() when C++11 support is more prevalent

        return DispatchReduce<ArgIndexInputIteratorT, OutputIteratorT, OffsetT, cub::ArgMax>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_indexed_in,
            d_out,
            num_items,
            cub::ArgMax(),
            initial_value,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Reduces segments of values, where segments are demarcated by corresponding runs of identical keys.
     *
     * \par
     * This operation computes segmented reductions within \p d_values_in using
     * the specified binary \p reduction_op functor.  The segments are identified by
     * "runs" of corresponding keys in \p d_keys_in, where runs are maximal ranges of
     * consecutive, identical keys.  For the <em>i</em><sup>th</sup> run encountered,
     * the first key of the run and the corresponding value aggregate of that run are
     * written to <tt>d_unique_out[<em>i</em>]</tt> and <tt>d_aggregates_out[<em>i</em>]</tt>,
     * respectively. The total number of runs encountered is written to \p d_num_runs_out.
     *
     * \par
     * - The <tt>==</tt> equality operator is used to determine whether keys are equivalent
     * - Provides "run-to-run" determinism for pseudo-associative reduction
     *   (e.g., addition of floating point types) on the same GPU device.
     *   However, results for pseudo-associative reduction may be inconsistent
     *   from one device to a another device of a different compute-capability
     *   because CUB can employ different tile-sizing for different architectures.
     * - \devicestorage
     *
     * \par Performance
     * The following chart illustrates reduction-by-key (sum) performance across
     * different CUDA architectures for \p fp32 and \p fp64 values, respectively.  Segments
     * are identified by \p int32 keys, and have lengths uniformly sampled from [1,1000].
     *
     * \image html reduce_by_key_fp32_len_500.png
     * \image html reduce_by_key_fp64_len_500.png
     *
     * \par
     * The following charts are similar, but with segment lengths uniformly sampled from [1,10]:
     *
     * \image html reduce_by_key_fp32_len_5.png
     * \image html reduce_by_key_fp64_len_5.png
     *
     * \par Snippet
     * The code snippet below illustrates the segmented reduction of \p int values grouped
     * by runs of associated \p int keys.
     * \par
     * \code
     * #include <cub/cub.cuh>   // or equivalently <cub/device/device_reduce.cuh>
     *
     * // CustomMin functor
     * struct CustomMin
     * {
     *     template <typename T>
     *     CUB_RUNTIME_FUNCTION __forceinline__
     *     T operator()(const T &a, const T &b) const {
     *         return (b < a) ? b : a;
     *     }
     * };
     *
     * // Declare, allocate, and initialize device-accessible pointers for input and output
     * int          num_items;          // e.g., 8
     * int          *d_keys_in;         // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
     * int          *d_values_in;       // e.g., [0, 7, 1, 6, 2, 5, 3, 4]
     * int          *d_unique_out;      // e.g., [-, -, -, -, -, -, -, -]
     * int          *d_aggregates_out;  // e.g., [-, -, -, -, -, -, -, -]
     * int          *d_num_runs_out;    // e.g., [-]
     * CustomMin    reduction_op;
     * ...
     *
     * // Determine temporary device storage requirements
     * void     *d_temp_storage = NULL;
     * size_t   temp_storage_bytes = 0;
     * cub::DeviceReduce::ReduceByKey(d_temp_storage, temp_storage_bytes, d_keys_in, d_unique_out, d_values_in, d_aggregates_out, d_num_runs_out, reduction_op, num_items);
     *
     * // Allocate temporary storage
     * cudaMalloc(&d_temp_storage, temp_storage_bytes);
     *
     * // Run reduce-by-key
     * cub::DeviceReduce::ReduceByKey(d_temp_storage, temp_storage_bytes, d_keys_in, d_unique_out, d_values_in, d_aggregates_out, d_num_runs_out, reduction_op, num_items);
     *
     * // d_unique_out      <-- [0, 2, 9, 5, 8]
     * // d_aggregates_out  <-- [0, 1, 6, 2, 4]
     * // d_num_runs_out    <-- [5]
     *
     * \endcode
     *
     * \tparam KeysInputIteratorT       <b>[inferred]</b> Random-access input iterator type for reading input keys \iterator
     * \tparam UniqueOutputIteratorT    <b>[inferred]</b> Random-access output iterator type for writing unique output keys \iterator
     * \tparam ValuesInputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading input values \iterator
     * \tparam AggregatesOutputIterator <b>[inferred]</b> Random-access output iterator type for writing output value aggregates \iterator
     * \tparam NumRunsOutputIteratorT   <b>[inferred]</b> Output iterator type for recording the number of runs encountered \iterator
     * \tparam ReductionOpT              <b>[inferred]</b> Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt> 
     */
    template <
        typename                    KeysInputIteratorT,
        typename                    UniqueOutputIteratorT,
        typename                    ValuesInputIteratorT,
        typename                    AggregatesOutputIteratorT,
        typename                    NumRunsOutputIteratorT,
        typename                    ReductionOpT>
    CUB_RUNTIME_FUNCTION __forceinline__
    static cudaError_t ReduceByKey(
        void                        *d_temp_storage,                ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
        size_t                      &temp_storage_bytes,            ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
        KeysInputIteratorT          d_keys_in,                      ///< [in] Pointer to the input sequence of keys
        UniqueOutputIteratorT       d_unique_out,                   ///< [out] Pointer to the output sequence of unique keys (one key per run)
        ValuesInputIteratorT        d_values_in,                    ///< [in] Pointer to the input sequence of corresponding values
        AggregatesOutputIteratorT   d_aggregates_out,               ///< [out] Pointer to the output sequence of value aggregates (one aggregate per run)
        NumRunsOutputIteratorT      d_num_runs_out,                 ///< [out] Pointer to total number of runs encountered (i.e., the length of d_unique_out)
        ReductionOpT                reduction_op,                   ///< [in] Binary reduction functor
        int                         num_items,                      ///< [in] Total number of associated key+value pairs (i.e., the length of \p d_in_keys and \p d_in_values)
        cudaStream_t                stream             = 0,         ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                        debug_synchronous  = false)     ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  May cause significant slowdown.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // FlagT iterator type (not used)

        // Selection op (not used)

        // Default == operator
        typedef Equality EqualityOp;

        return DispatchReduceByKey<KeysInputIteratorT, UniqueOutputIteratorT, ValuesInputIteratorT, AggregatesOutputIteratorT, NumRunsOutputIteratorT, EqualityOp, ReductionOpT, OffsetT>::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_keys_in,
            d_unique_out,
            d_values_in,
            d_aggregates_out,
            d_num_runs_out,
            EqualityOp(),
            reduction_op,
            num_items,
            stream,
            debug_synchronous);
    }

};

/**
 * \example example_device_reduce.cu
 */

}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)