Spaces:
Runtime error
Runtime error
File size: 16,098 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
.. _classes:
Object-oriented code
####################
Creating bindings for a custom type
===================================
Let's now look at a more complex example where we'll create bindings for a
custom C++ data structure named ``Pet``. Its definition is given below:
.. code-block:: cpp
struct Pet {
Pet(const std::string &name) : name(name) { }
void setName(const std::string &name_) { name = name_; }
const std::string &getName() const { return name; }
std::string name;
};
The binding code for ``Pet`` looks as follows:
.. code-block:: cpp
#include <pybind11/pybind11.h>
namespace py = pybind11;
PYBIND11_MODULE(example, m) {
py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def("setName", &Pet::setName)
.def("getName", &Pet::getName);
}
:class:`class_` creates bindings for a C++ *class* or *struct*-style data
structure. :func:`init` is a convenience function that takes the types of a
constructor's parameters as template arguments and wraps the corresponding
constructor (see the :ref:`custom_constructors` section for details). An
interactive Python session demonstrating this example is shown below:
.. code-block:: pycon
% python
>>> import example
>>> p = example.Pet('Molly')
>>> print(p)
<example.Pet object at 0x10cd98060>
>>> p.getName()
u'Molly'
>>> p.setName('Charly')
>>> p.getName()
u'Charly'
.. seealso::
Static member functions can be bound in the same way using
:func:`class_::def_static`.
Keyword and default arguments
=============================
It is possible to specify keyword and default arguments using the syntax
discussed in the previous chapter. Refer to the sections :ref:`keyword_args`
and :ref:`default_args` for details.
Binding lambda functions
========================
Note how ``print(p)`` produced a rather useless summary of our data structure in the example above:
.. code-block:: pycon
>>> print(p)
<example.Pet object at 0x10cd98060>
To address this, we could bind a utility function that returns a human-readable
summary to the special method slot named ``__repr__``. Unfortunately, there is no
suitable functionality in the ``Pet`` data structure, and it would be nice if
we did not have to change it. This can easily be accomplished by binding a
Lambda function instead:
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def("setName", &Pet::setName)
.def("getName", &Pet::getName)
.def("__repr__",
[](const Pet &a) {
return "<example.Pet named '" + a.name + "'>";
}
);
Both stateless [#f1]_ and stateful lambda closures are supported by pybind11.
With the above change, the same Python code now produces the following output:
.. code-block:: pycon
>>> print(p)
<example.Pet named 'Molly'>
.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
.. _properties:
Instance and static fields
==========================
We can also directly expose the ``name`` field using the
:func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly`
method also exists for ``const`` fields.
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def_readwrite("name", &Pet::name)
// ... remainder ...
This makes it possible to write
.. code-block:: pycon
>>> p = example.Pet('Molly')
>>> p.name
u'Molly'
>>> p.name = 'Charly'
>>> p.name
u'Charly'
Now suppose that ``Pet::name`` was a private internal variable
that can only be accessed via setters and getters.
.. code-block:: cpp
class Pet {
public:
Pet(const std::string &name) : name(name) { }
void setName(const std::string &name_) { name = name_; }
const std::string &getName() const { return name; }
private:
std::string name;
};
In this case, the method :func:`class_::def_property`
(:func:`class_::def_property_readonly` for read-only data) can be used to
provide a field-like interface within Python that will transparently call
the setter and getter functions:
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def_property("name", &Pet::getName, &Pet::setName)
// ... remainder ...
Write only properties can be defined by passing ``nullptr`` as the
input for the read function.
.. seealso::
Similar functions :func:`class_::def_readwrite_static`,
:func:`class_::def_readonly_static` :func:`class_::def_property_static`,
and :func:`class_::def_property_readonly_static` are provided for binding
static variables and properties. Please also see the section on
:ref:`static_properties` in the advanced part of the documentation.
Dynamic attributes
==================
Native Python classes can pick up new attributes dynamically:
.. code-block:: pycon
>>> class Pet:
... name = 'Molly'
...
>>> p = Pet()
>>> p.name = 'Charly' # overwrite existing
>>> p.age = 2 # dynamically add a new attribute
By default, classes exported from C++ do not support this and the only writable
attributes are the ones explicitly defined using :func:`class_::def_readwrite`
or :func:`class_::def_property`.
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def(py::init<>())
.def_readwrite("name", &Pet::name);
Trying to set any other attribute results in an error:
.. code-block:: pycon
>>> p = example.Pet()
>>> p.name = 'Charly' # OK, attribute defined in C++
>>> p.age = 2 # fail
AttributeError: 'Pet' object has no attribute 'age'
To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag
must be added to the :class:`py::class_` constructor:
.. code-block:: cpp
py::class_<Pet>(m, "Pet", py::dynamic_attr())
.def(py::init<>())
.def_readwrite("name", &Pet::name);
Now everything works as expected:
.. code-block:: pycon
>>> p = example.Pet()
>>> p.name = 'Charly' # OK, overwrite value in C++
>>> p.age = 2 # OK, dynamically add a new attribute
>>> p.__dict__ # just like a native Python class
{'age': 2}
Note that there is a small runtime cost for a class with dynamic attributes.
Not only because of the addition of a ``__dict__``, but also because of more
expensive garbage collection tracking which must be activated to resolve
possible circular references. Native Python classes incur this same cost by
default, so this is not anything to worry about. By default, pybind11 classes
are more efficient than native Python classes. Enabling dynamic attributes
just brings them on par.
.. _inheritance:
Inheritance and automatic downcasting
=====================================
Suppose now that the example consists of two data structures with an
inheritance relationship:
.. code-block:: cpp
struct Pet {
Pet(const std::string &name) : name(name) { }
std::string name;
};
struct Dog : Pet {
Dog(const std::string &name) : Pet(name) { }
std::string bark() const { return "woof!"; }
};
There are two different ways of indicating a hierarchical relationship to
pybind11: the first specifies the C++ base class as an extra template
parameter of the :class:`class_`:
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &>())
.def_readwrite("name", &Pet::name);
// Method 1: template parameter:
py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);
Alternatively, we can also assign a name to the previously bound ``Pet``
:class:`class_` object and reference it when binding the ``Dog`` class:
.. code-block:: cpp
py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
.def_readwrite("name", &Pet::name);
// Method 2: pass parent class_ object:
py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
.def(py::init<const std::string &>())
.def("bark", &Dog::bark);
Functionality-wise, both approaches are equivalent. Afterwards, instances will
expose fields and methods of both types:
.. code-block:: pycon
>>> p = example.Dog('Molly')
>>> p.name
u'Molly'
>>> p.bark()
u'woof!'
The C++ classes defined above are regular non-polymorphic types with an
inheritance relationship. This is reflected in Python:
.. code-block:: cpp
// Return a base pointer to a derived instance
m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
.. code-block:: pycon
>>> p = example.pet_store()
>>> type(p) # `Dog` instance behind `Pet` pointer
Pet # no pointer downcasting for regular non-polymorphic types
>>> p.bark()
AttributeError: 'Pet' object has no attribute 'bark'
The function returned a ``Dog`` instance, but because it's a non-polymorphic
type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only
considered polymorphic if it has at least one virtual function and pybind11
will automatically recognize this:
.. code-block:: cpp
struct PolymorphicPet {
virtual ~PolymorphicPet() = default;
};
struct PolymorphicDog : PolymorphicPet {
std::string bark() const { return "woof!"; }
};
// Same binding code
py::class_<PolymorphicPet>(m, "PolymorphicPet");
py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
.def(py::init<>())
.def("bark", &PolymorphicDog::bark);
// Again, return a base pointer to a derived instance
m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
.. code-block:: pycon
>>> p = example.pet_store2()
>>> type(p)
PolymorphicDog # automatically downcast
>>> p.bark()
u'woof!'
Given a pointer to a polymorphic base, pybind11 performs automatic downcasting
to the actual derived type. Note that this goes beyond the usual situation in
C++: we don't just get access to the virtual functions of the base, we get the
concrete derived type including functions and attributes that the base type may
not even be aware of.
.. seealso::
For more information about polymorphic behavior see :ref:`overriding_virtuals`.
Overloaded methods
==================
Sometimes there are several overloaded C++ methods with the same name taking
different kinds of input arguments:
.. code-block:: cpp
struct Pet {
Pet(const std::string &name, int age) : name(name), age(age) { }
void set(int age_) { age = age_; }
void set(const std::string &name_) { name = name_; }
std::string name;
int age;
};
Attempting to bind ``Pet::set`` will cause an error since the compiler does not
know which method the user intended to select. We can disambiguate by casting
them to function pointers. Binding multiple functions to the same Python name
automatically creates a chain of function overloads that will be tried in
sequence.
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def(py::init<const std::string &, int>())
.def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age")
.def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name");
The overload signatures are also visible in the method's docstring:
.. code-block:: pycon
>>> help(example.Pet)
class Pet(__builtin__.object)
| Methods defined here:
|
| __init__(...)
| Signature : (Pet, str, int) -> NoneType
|
| set(...)
| 1. Signature : (Pet, int) -> NoneType
|
| Set the pet's age
|
| 2. Signature : (Pet, str) -> NoneType
|
| Set the pet's name
If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative
syntax to cast the overloaded function:
.. code-block:: cpp
py::class_<Pet>(m, "Pet")
.def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
.def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
Here, ``py::overload_cast`` only requires the parameter types to be specified.
The return type and class are deduced. This avoids the additional noise of
``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based
on constness, the ``py::const_`` tag should be used:
.. code-block:: cpp
struct Widget {
int foo(int x, float y);
int foo(int x, float y) const;
};
py::class_<Widget>(m, "Widget")
.def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
.def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
If you prefer the ``py::overload_cast`` syntax but have a C++11 compatible compiler only,
you can use ``py::detail::overload_cast_impl`` with an additional set of parentheses:
.. code-block:: cpp
template <typename... Args>
using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>;
py::class_<Pet>(m, "Pet")
.def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age")
.def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name");
.. [#cpp14] A compiler which supports the ``-std=c++14`` flag
or Visual Studio 2015 Update 2 and newer.
.. note::
To define multiple overloaded constructors, simply declare one after the
other using the ``.def(py::init<...>())`` syntax. The existing machinery
for specifying keyword and default arguments also works.
Enumerations and internal types
===============================
Let's now suppose that the example class contains an internal enumeration type,
e.g.:
.. code-block:: cpp
struct Pet {
enum Kind {
Dog = 0,
Cat
};
Pet(const std::string &name, Kind type) : name(name), type(type) { }
std::string name;
Kind type;
};
The binding code for this example looks as follows:
.. code-block:: cpp
py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &, Pet::Kind>())
.def_readwrite("name", &Pet::name)
.def_readwrite("type", &Pet::type);
py::enum_<Pet::Kind>(pet, "Kind")
.value("Dog", Pet::Kind::Dog)
.value("Cat", Pet::Kind::Cat)
.export_values();
To ensure that the ``Kind`` type is created within the scope of ``Pet``, the
``pet`` :class:`class_` instance must be supplied to the :class:`enum_`.
constructor. The :func:`enum_::export_values` function exports the enum entries
into the parent scope, which should be skipped for newer C++11-style strongly
typed enums.
.. code-block:: pycon
>>> p = Pet('Lucy', Pet.Cat)
>>> p.type
Kind.Cat
>>> int(p.type)
1L
The entries defined by the enumeration type are exposed in the ``__members__`` property:
.. code-block:: pycon
>>> Pet.Kind.__members__
{'Dog': Kind.Dog, 'Cat': Kind.Cat}
The ``name`` property returns the name of the enum value as a unicode string.
.. note::
It is also possible to use ``str(enum)``, however these accomplish different
goals. The following shows how these two approaches differ.
.. code-block:: pycon
>>> p = Pet( "Lucy", Pet.Cat )
>>> pet_type = p.type
>>> pet_type
Pet.Cat
>>> str(pet_type)
'Pet.Cat'
>>> pet_type.name
'Cat'
.. note::
When the special tag ``py::arithmetic()`` is specified to the ``enum_``
constructor, pybind11 creates an enumeration that also supports rudimentary
arithmetic and bit-level operations like comparisons, and, or, xor, negation,
etc.
.. code-block:: cpp
py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
...
By default, these are omitted to conserve space.
|