Spaces:
Runtime error
Runtime error
import torch | |
import sys | |
sys.path.append("../") | |
sys.path.append("../../") | |
import diffvg | |
import pydiffvg | |
import time | |
from enum import IntEnum | |
import warnings | |
print_timing = False | |
def set_print_timing(val): | |
global print_timing | |
print_timing=val | |
class OutputType(IntEnum): | |
color = 1 | |
sdf = 2 | |
class RenderFunction(torch.autograd.Function): | |
""" | |
The PyTorch interface of diffvg. | |
""" | |
def serialize_scene(canvas_width, | |
canvas_height, | |
shapes, | |
shape_groups, | |
filter = pydiffvg.PixelFilter(type = diffvg.FilterType.box, | |
radius = torch.tensor(0.5)), | |
output_type = OutputType.color, | |
use_prefiltering = False, | |
eval_positions = torch.tensor([])): | |
""" | |
Given a list of shapes, convert them to a linear list of argument, | |
so that we can use it in PyTorch. | |
""" | |
num_shapes = len(shapes) | |
num_shape_groups = len(shape_groups) | |
args = [] | |
args.append(canvas_width) | |
args.append(canvas_height) | |
args.append(num_shapes) | |
args.append(num_shape_groups) | |
args.append(output_type) | |
args.append(use_prefiltering) | |
args.append(eval_positions.to(pydiffvg.get_device())) | |
for shape in shapes: | |
use_thickness = False | |
if isinstance(shape, pydiffvg.Circle): | |
assert(shape.center.is_contiguous()) | |
args.append(diffvg.ShapeType.circle) | |
args.append(shape.radius.cpu()) | |
args.append(shape.center.cpu()) | |
elif isinstance(shape, pydiffvg.Ellipse): | |
assert(shape.radius.is_contiguous()) | |
assert(shape.center.is_contiguous()) | |
args.append(diffvg.ShapeType.ellipse) | |
args.append(shape.radius.cpu()) | |
args.append(shape.center.cpu()) | |
elif isinstance(shape, pydiffvg.Path): | |
assert(shape.num_control_points.is_contiguous()) | |
assert(shape.points.is_contiguous()) | |
assert(shape.points.shape[1] == 2) | |
assert(torch.isfinite(shape.points).all()) | |
args.append(diffvg.ShapeType.path) | |
args.append(shape.num_control_points.to(torch.int32).cpu()) | |
args.append(shape.points.cpu()) | |
if len(shape.stroke_width.shape) > 0 and shape.stroke_width.shape[0] > 1: | |
assert(torch.isfinite(shape.stroke_width).all()) | |
use_thickness = True | |
args.append(shape.stroke_width.cpu()) | |
else: | |
args.append(None) | |
args.append(shape.is_closed) | |
args.append(shape.use_distance_approx) | |
elif isinstance(shape, pydiffvg.Polygon): | |
assert(shape.points.is_contiguous()) | |
assert(shape.points.shape[1] == 2) | |
args.append(diffvg.ShapeType.path) | |
if shape.is_closed: | |
args.append(torch.zeros(shape.points.shape[0], dtype = torch.int32)) | |
else: | |
args.append(torch.zeros(shape.points.shape[0] - 1, dtype = torch.int32)) | |
args.append(shape.points.cpu()) | |
args.append(None) | |
args.append(shape.is_closed) | |
args.append(False) # use_distance_approx | |
elif isinstance(shape, pydiffvg.Rect): | |
assert(shape.p_min.is_contiguous()) | |
assert(shape.p_max.is_contiguous()) | |
args.append(diffvg.ShapeType.rect) | |
args.append(shape.p_min.cpu()) | |
args.append(shape.p_max.cpu()) | |
else: | |
assert(False) | |
if use_thickness: | |
args.append(torch.tensor(0.0)) | |
else: | |
args.append(shape.stroke_width.cpu()) | |
for shape_group in shape_groups: | |
assert(shape_group.shape_ids.is_contiguous()) | |
args.append(shape_group.shape_ids.to(torch.int32).cpu()) | |
# Fill color | |
if shape_group.fill_color is None: | |
args.append(None) | |
elif isinstance(shape_group.fill_color, torch.Tensor): | |
assert(shape_group.fill_color.is_contiguous()) | |
args.append(diffvg.ColorType.constant) | |
args.append(shape_group.fill_color.cpu()) | |
elif isinstance(shape_group.fill_color, pydiffvg.LinearGradient): | |
assert(shape_group.fill_color.begin.is_contiguous()) | |
assert(shape_group.fill_color.end.is_contiguous()) | |
assert(shape_group.fill_color.offsets.is_contiguous()) | |
assert(shape_group.fill_color.stop_colors.is_contiguous()) | |
args.append(diffvg.ColorType.linear_gradient) | |
args.append(shape_group.fill_color.begin.cpu()) | |
args.append(shape_group.fill_color.end.cpu()) | |
args.append(shape_group.fill_color.offsets.cpu()) | |
args.append(shape_group.fill_color.stop_colors.cpu()) | |
elif isinstance(shape_group.fill_color, pydiffvg.RadialGradient): | |
assert(shape_group.fill_color.center.is_contiguous()) | |
assert(shape_group.fill_color.radius.is_contiguous()) | |
assert(shape_group.fill_color.offsets.is_contiguous()) | |
assert(shape_group.fill_color.stop_colors.is_contiguous()) | |
args.append(diffvg.ColorType.radial_gradient) | |
args.append(shape_group.fill_color.center.cpu()) | |
args.append(shape_group.fill_color.radius.cpu()) | |
args.append(shape_group.fill_color.offsets.cpu()) | |
args.append(shape_group.fill_color.stop_colors.cpu()) | |
if shape_group.fill_color is not None: | |
# go through the underlying shapes and check if they are all closed | |
for shape_id in shape_group.shape_ids: | |
if isinstance(shapes[shape_id], pydiffvg.Path): | |
if not shapes[shape_id].is_closed: | |
warnings.warn("Detected non-closed paths with fill color. This might causes unexpected results.", Warning) | |
# Stroke color | |
if shape_group.stroke_color is None: | |
args.append(None) | |
elif isinstance(shape_group.stroke_color, torch.Tensor): | |
assert(shape_group.stroke_color.is_contiguous()) | |
args.append(diffvg.ColorType.constant) | |
args.append(shape_group.stroke_color.cpu()) | |
elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient): | |
assert(shape_group.stroke_color.begin.is_contiguous()) | |
assert(shape_group.stroke_color.end.is_contiguous()) | |
assert(shape_group.stroke_color.offsets.is_contiguous()) | |
assert(shape_group.stroke_color.stop_colors.is_contiguous()) | |
assert(torch.isfinite(shape_group.stroke_color.stop_colors).all()) | |
args.append(diffvg.ColorType.linear_gradient) | |
args.append(shape_group.stroke_color.begin.cpu()) | |
args.append(shape_group.stroke_color.end.cpu()) | |
args.append(shape_group.stroke_color.offsets.cpu()) | |
args.append(shape_group.stroke_color.stop_colors.cpu()) | |
elif isinstance(shape_group.stroke_color, pydiffvg.RadialGradient): | |
assert(shape_group.stroke_color.center.is_contiguous()) | |
assert(shape_group.stroke_color.radius.is_contiguous()) | |
assert(shape_group.stroke_color.offsets.is_contiguous()) | |
assert(shape_group.stroke_color.stop_colors.is_contiguous()) | |
assert(torch.isfinite(shape_group.stroke_color.stop_colors).all()) | |
args.append(diffvg.ColorType.radial_gradient) | |
args.append(shape_group.stroke_color.center.cpu()) | |
args.append(shape_group.stroke_color.radius.cpu()) | |
args.append(shape_group.stroke_color.offsets.cpu()) | |
args.append(shape_group.stroke_color.stop_colors.cpu()) | |
args.append(shape_group.use_even_odd_rule) | |
# Transformation | |
args.append(shape_group.shape_to_canvas.contiguous().cpu()) | |
args.append(filter.type) | |
args.append(filter.radius.cpu()) | |
return args | |
def forward(ctx, | |
width, | |
height, | |
num_samples_x, | |
num_samples_y, | |
seed, | |
background_image, | |
*args): | |
""" | |
Forward rendering pass. | |
""" | |
# Unpack arguments | |
current_index = 0 | |
canvas_width = args[current_index] | |
current_index += 1 | |
canvas_height = args[current_index] | |
current_index += 1 | |
num_shapes = args[current_index] | |
current_index += 1 | |
num_shape_groups = args[current_index] | |
current_index += 1 | |
output_type = args[current_index] | |
current_index += 1 | |
use_prefiltering = args[current_index] | |
current_index += 1 | |
eval_positions = args[current_index] | |
current_index += 1 | |
shapes = [] | |
shape_groups = [] | |
shape_contents = [] # Important to avoid GC deleting the shapes | |
color_contents = [] # Same as above | |
for shape_id in range(num_shapes): | |
shape_type = args[current_index] | |
current_index += 1 | |
if shape_type == diffvg.ShapeType.circle: | |
radius = args[current_index] | |
current_index += 1 | |
center = args[current_index] | |
current_index += 1 | |
shape = diffvg.Circle(radius, diffvg.Vector2f(center[0], center[1])) | |
elif shape_type == diffvg.ShapeType.ellipse: | |
radius = args[current_index] | |
current_index += 1 | |
center = args[current_index] | |
current_index += 1 | |
shape = diffvg.Ellipse(diffvg.Vector2f(radius[0], radius[1]), | |
diffvg.Vector2f(center[0], center[1])) | |
elif shape_type == diffvg.ShapeType.path: | |
num_control_points = args[current_index] | |
current_index += 1 | |
points = args[current_index] | |
current_index += 1 | |
thickness = args[current_index] | |
current_index += 1 | |
is_closed = args[current_index] | |
current_index += 1 | |
use_distance_approx = args[current_index] | |
current_index += 1 | |
shape = diffvg.Path(diffvg.int_ptr(num_control_points.data_ptr()), | |
diffvg.float_ptr(points.data_ptr()), | |
diffvg.float_ptr(thickness.data_ptr() if thickness is not None else 0), | |
num_control_points.shape[0], | |
points.shape[0], | |
is_closed, | |
use_distance_approx) | |
elif shape_type == diffvg.ShapeType.rect: | |
p_min = args[current_index] | |
current_index += 1 | |
p_max = args[current_index] | |
current_index += 1 | |
shape = diffvg.Rect(diffvg.Vector2f(p_min[0], p_min[1]), | |
diffvg.Vector2f(p_max[0], p_max[1])) | |
else: | |
assert(False) | |
stroke_width = args[current_index] | |
current_index += 1 | |
shapes.append(diffvg.Shape(\ | |
shape_type, shape.get_ptr(), stroke_width.item())) | |
shape_contents.append(shape) | |
for shape_group_id in range(num_shape_groups): | |
shape_ids = args[current_index] | |
current_index += 1 | |
fill_color_type = args[current_index] | |
current_index += 1 | |
if fill_color_type == diffvg.ColorType.constant: | |
color = args[current_index] | |
current_index += 1 | |
fill_color = diffvg.Constant(\ | |
diffvg.Vector4f(color[0], color[1], color[2], color[3])) | |
elif fill_color_type == diffvg.ColorType.linear_gradient: | |
beg = args[current_index] | |
current_index += 1 | |
end = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
fill_color = diffvg.LinearGradient(diffvg.Vector2f(beg[0], beg[1]), | |
diffvg.Vector2f(end[0], end[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif fill_color_type == diffvg.ColorType.radial_gradient: | |
center = args[current_index] | |
current_index += 1 | |
radius = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
fill_color = diffvg.RadialGradient(diffvg.Vector2f(center[0], center[1]), | |
diffvg.Vector2f(radius[0], radius[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif fill_color_type is None: | |
fill_color = None | |
else: | |
assert(False) | |
stroke_color_type = args[current_index] | |
current_index += 1 | |
if stroke_color_type == diffvg.ColorType.constant: | |
color = args[current_index] | |
current_index += 1 | |
stroke_color = diffvg.Constant(\ | |
diffvg.Vector4f(color[0], color[1], color[2], color[3])) | |
elif stroke_color_type == diffvg.ColorType.linear_gradient: | |
beg = args[current_index] | |
current_index += 1 | |
end = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
stroke_color = diffvg.LinearGradient(diffvg.Vector2f(beg[0], beg[1]), | |
diffvg.Vector2f(end[0], end[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif stroke_color_type == diffvg.ColorType.radial_gradient: | |
center = args[current_index] | |
current_index += 1 | |
radius = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
stroke_color = diffvg.RadialGradient(diffvg.Vector2f(center[0], center[1]), | |
diffvg.Vector2f(radius[0], radius[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif stroke_color_type is None: | |
stroke_color = None | |
else: | |
assert(False) | |
use_even_odd_rule = args[current_index] | |
current_index += 1 | |
shape_to_canvas = args[current_index] | |
current_index += 1 | |
if fill_color is not None: | |
color_contents.append(fill_color) | |
if stroke_color is not None: | |
color_contents.append(stroke_color) | |
shape_groups.append(diffvg.ShapeGroup(\ | |
diffvg.int_ptr(shape_ids.data_ptr()), | |
shape_ids.shape[0], | |
diffvg.ColorType.constant if fill_color_type is None else fill_color_type, | |
diffvg.void_ptr(0) if fill_color is None else fill_color.get_ptr(), | |
diffvg.ColorType.constant if stroke_color_type is None else stroke_color_type, | |
diffvg.void_ptr(0) if stroke_color is None else stroke_color.get_ptr(), | |
use_even_odd_rule, | |
diffvg.float_ptr(shape_to_canvas.data_ptr()))) | |
filter_type = args[current_index] | |
current_index += 1 | |
filter_radius = args[current_index] | |
current_index += 1 | |
filt = diffvg.Filter(filter_type, filter_radius) | |
start = time.time() | |
scene = diffvg.Scene(canvas_width, canvas_height, | |
shapes, shape_groups, filt, pydiffvg.get_use_gpu(), | |
pydiffvg.get_device().index if pydiffvg.get_device().index is not None else -1) | |
time_elapsed = time.time() - start | |
global print_timing | |
if print_timing: | |
print('Scene construction, time: %.5f s' % time_elapsed) | |
if output_type == OutputType.color: | |
assert(eval_positions.shape[0] == 0) | |
rendered_image = torch.zeros(height, width, 4, device = pydiffvg.get_device()) | |
else: | |
assert(output_type == OutputType.sdf) | |
if eval_positions.shape[0] == 0: | |
rendered_image = torch.zeros(height, width, 1, device = pydiffvg.get_device()) | |
else: | |
rendered_image = torch.zeros(eval_positions.shape[0], 1, device = pydiffvg.get_device()) | |
if background_image is not None: | |
background_image = background_image.to(pydiffvg.get_device()) | |
if background_image.shape[2] == 3: | |
background_image = torch.cat((\ | |
background_image, torch.ones(background_image.shape[0], background_image.shape[1], 1, | |
device = background_image.device)), dim = 2) | |
background_image = background_image.contiguous() | |
assert(background_image.shape[0] == rendered_image.shape[0]) | |
assert(background_image.shape[1] == rendered_image.shape[1]) | |
assert(background_image.shape[2] == 4) | |
start = time.time() | |
diffvg.render(scene, | |
diffvg.float_ptr(background_image.data_ptr() if background_image is not None else 0), | |
diffvg.float_ptr(rendered_image.data_ptr() if output_type == OutputType.color else 0), | |
diffvg.float_ptr(rendered_image.data_ptr() if output_type == OutputType.sdf else 0), | |
width, | |
height, | |
num_samples_x, | |
num_samples_y, | |
seed, | |
diffvg.float_ptr(0), # d_background_image | |
diffvg.float_ptr(0), # d_render_image | |
diffvg.float_ptr(0), # d_render_sdf | |
diffvg.float_ptr(0), # d_translation | |
use_prefiltering, | |
diffvg.float_ptr(eval_positions.data_ptr()), | |
eval_positions.shape[0]) | |
assert(torch.isfinite(rendered_image).all()) | |
time_elapsed = time.time() - start | |
if print_timing: | |
print('Forward pass, time: %.5f s' % time_elapsed) | |
ctx.scene = scene | |
ctx.background_image = background_image | |
ctx.shape_contents = shape_contents | |
ctx.color_contents = color_contents | |
ctx.filter = filt | |
ctx.width = width | |
ctx.height = height | |
ctx.num_samples_x = num_samples_x | |
ctx.num_samples_y = num_samples_y | |
ctx.seed = seed | |
ctx.output_type = output_type | |
ctx.use_prefiltering = use_prefiltering | |
ctx.eval_positions = eval_positions | |
return rendered_image | |
def render_grad(grad_img, | |
width, | |
height, | |
num_samples_x, | |
num_samples_y, | |
seed, | |
background_image, | |
*args): | |
if not grad_img.is_contiguous(): | |
grad_img = grad_img.contiguous() | |
assert(torch.isfinite(grad_img).all()) | |
# Unpack arguments | |
current_index = 0 | |
canvas_width = args[current_index] | |
current_index += 1 | |
canvas_height = args[current_index] | |
current_index += 1 | |
num_shapes = args[current_index] | |
current_index += 1 | |
num_shape_groups = args[current_index] | |
current_index += 1 | |
output_type = args[current_index] | |
current_index += 1 | |
use_prefiltering = args[current_index] | |
current_index += 1 | |
eval_positions = args[current_index] | |
current_index += 1 | |
shapes = [] | |
shape_groups = [] | |
shape_contents = [] # Important to avoid GC deleting the shapes | |
color_contents = [] # Same as above | |
for shape_id in range(num_shapes): | |
shape_type = args[current_index] | |
current_index += 1 | |
if shape_type == diffvg.ShapeType.circle: | |
radius = args[current_index] | |
current_index += 1 | |
center = args[current_index] | |
current_index += 1 | |
shape = diffvg.Circle(radius, diffvg.Vector2f(center[0], center[1])) | |
elif shape_type == diffvg.ShapeType.ellipse: | |
radius = args[current_index] | |
current_index += 1 | |
center = args[current_index] | |
current_index += 1 | |
shape = diffvg.Ellipse(diffvg.Vector2f(radius[0], radius[1]), | |
diffvg.Vector2f(center[0], center[1])) | |
elif shape_type == diffvg.ShapeType.path: | |
num_control_points = args[current_index] | |
current_index += 1 | |
points = args[current_index] | |
current_index += 1 | |
thickness = args[current_index] | |
current_index += 1 | |
is_closed = args[current_index] | |
current_index += 1 | |
use_distance_approx = args[current_index] | |
current_index += 1 | |
shape = diffvg.Path(diffvg.int_ptr(num_control_points.data_ptr()), | |
diffvg.float_ptr(points.data_ptr()), | |
diffvg.float_ptr(thickness.data_ptr() if thickness is not None else 0), | |
num_control_points.shape[0], | |
points.shape[0], | |
is_closed, | |
use_distance_approx) | |
elif shape_type == diffvg.ShapeType.rect: | |
p_min = args[current_index] | |
current_index += 1 | |
p_max = args[current_index] | |
current_index += 1 | |
shape = diffvg.Rect(diffvg.Vector2f(p_min[0], p_min[1]), | |
diffvg.Vector2f(p_max[0], p_max[1])) | |
else: | |
assert(False) | |
stroke_width = args[current_index] | |
current_index += 1 | |
shapes.append(diffvg.Shape(\ | |
shape_type, shape.get_ptr(), stroke_width.item())) | |
shape_contents.append(shape) | |
for shape_group_id in range(num_shape_groups): | |
shape_ids = args[current_index] | |
current_index += 1 | |
fill_color_type = args[current_index] | |
current_index += 1 | |
if fill_color_type == diffvg.ColorType.constant: | |
color = args[current_index] | |
current_index += 1 | |
fill_color = diffvg.Constant(\ | |
diffvg.Vector4f(color[0], color[1], color[2], color[3])) | |
elif fill_color_type == diffvg.ColorType.linear_gradient: | |
beg = args[current_index] | |
current_index += 1 | |
end = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
fill_color = diffvg.LinearGradient(diffvg.Vector2f(beg[0], beg[1]), | |
diffvg.Vector2f(end[0], end[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif fill_color_type == diffvg.ColorType.radial_gradient: | |
center = args[current_index] | |
current_index += 1 | |
radius = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
fill_color = diffvg.RadialGradient(diffvg.Vector2f(center[0], center[1]), | |
diffvg.Vector2f(radius[0], radius[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif fill_color_type is None: | |
fill_color = None | |
else: | |
assert(False) | |
stroke_color_type = args[current_index] | |
current_index += 1 | |
if stroke_color_type == diffvg.ColorType.constant: | |
color = args[current_index] | |
current_index += 1 | |
stroke_color = diffvg.Constant(\ | |
diffvg.Vector4f(color[0], color[1], color[2], color[3])) | |
elif stroke_color_type == diffvg.ColorType.linear_gradient: | |
beg = args[current_index] | |
current_index += 1 | |
end = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
stroke_color = diffvg.LinearGradient(diffvg.Vector2f(beg[0], beg[1]), | |
diffvg.Vector2f(end[0], end[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif stroke_color_type == diffvg.ColorType.radial_gradient: | |
center = args[current_index] | |
current_index += 1 | |
radius = args[current_index] | |
current_index += 1 | |
offsets = args[current_index] | |
current_index += 1 | |
stop_colors = args[current_index] | |
current_index += 1 | |
assert(offsets.shape[0] == stop_colors.shape[0]) | |
stroke_color = diffvg.RadialGradient(diffvg.Vector2f(center[0], center[1]), | |
diffvg.Vector2f(radius[0], radius[1]), | |
offsets.shape[0], | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
elif stroke_color_type is None: | |
stroke_color = None | |
else: | |
assert(False) | |
use_even_odd_rule = args[current_index] | |
current_index += 1 | |
shape_to_canvas = args[current_index] | |
current_index += 1 | |
if fill_color is not None: | |
color_contents.append(fill_color) | |
if stroke_color is not None: | |
color_contents.append(stroke_color) | |
shape_groups.append(diffvg.ShapeGroup(\ | |
diffvg.int_ptr(shape_ids.data_ptr()), | |
shape_ids.shape[0], | |
diffvg.ColorType.constant if fill_color_type is None else fill_color_type, | |
diffvg.void_ptr(0) if fill_color is None else fill_color.get_ptr(), | |
diffvg.ColorType.constant if stroke_color_type is None else stroke_color_type, | |
diffvg.void_ptr(0) if stroke_color is None else stroke_color.get_ptr(), | |
use_even_odd_rule, | |
diffvg.float_ptr(shape_to_canvas.data_ptr()))) | |
filter_type = args[current_index] | |
current_index += 1 | |
filter_radius = args[current_index] | |
current_index += 1 | |
filt = diffvg.Filter(filter_type, filter_radius) | |
scene = diffvg.Scene(canvas_width, canvas_height, | |
shapes, shape_groups, filt, pydiffvg.get_use_gpu(), | |
pydiffvg.get_device().index if pydiffvg.get_device().index is not None else -1) | |
if output_type == OutputType.color: | |
assert(grad_img.shape[2] == 4) | |
else: | |
assert(grad_img.shape[2] == 1) | |
if background_image is not None: | |
background_image = background_image.to(pydiffvg.get_device()) | |
if background_image.shape[2] == 3: | |
background_image = torch.cat((\ | |
background_image, torch.ones(background_image.shape[0], background_image.shape[1], 1, | |
device = background_image.device)), dim = 2) | |
background_image = background_image.contiguous() | |
assert(background_image.shape[0] == rendered_image.shape[0]) | |
assert(background_image.shape[1] == rendered_image.shape[1]) | |
assert(background_image.shape[2] == 4) | |
translation_grad_image = \ | |
torch.zeros(height, width, 2, device = pydiffvg.get_device()) | |
start = time.time() | |
diffvg.render(scene, | |
diffvg.float_ptr(background_image.data_ptr() if background_image is not None else 0), | |
diffvg.float_ptr(0), # render_image | |
diffvg.float_ptr(0), # render_sdf | |
width, | |
height, | |
num_samples_x, | |
num_samples_y, | |
seed, | |
diffvg.float_ptr(0), # d_background_image | |
diffvg.float_ptr(grad_img.data_ptr() if output_type == OutputType.color else 0), | |
diffvg.float_ptr(grad_img.data_ptr() if output_type == OutputType.sdf else 0), | |
diffvg.float_ptr(translation_grad_image.data_ptr()), | |
use_prefiltering, | |
diffvg.float_ptr(eval_positions.data_ptr()), | |
eval_positions.shape[0]) | |
time_elapsed = time.time() - start | |
if print_timing: | |
print('Gradient pass, time: %.5f s' % time_elapsed) | |
assert(torch.isfinite(translation_grad_image).all()) | |
return translation_grad_image | |
def backward(ctx, | |
grad_img): | |
if not grad_img.is_contiguous(): | |
grad_img = grad_img.contiguous() | |
assert(torch.isfinite(grad_img).all()) | |
scene = ctx.scene | |
width = ctx.width | |
height = ctx.height | |
num_samples_x = ctx.num_samples_x | |
num_samples_y = ctx.num_samples_y | |
seed = ctx.seed | |
output_type = ctx.output_type | |
use_prefiltering = ctx.use_prefiltering | |
eval_positions = ctx.eval_positions | |
background_image = ctx.background_image | |
if background_image is not None: | |
d_background_image = torch.zeros_like(background_image) | |
else: | |
d_background_image = None | |
start = time.time() | |
diffvg.render(scene, | |
diffvg.float_ptr(background_image.data_ptr() if background_image is not None else 0), | |
diffvg.float_ptr(0), # render_image | |
diffvg.float_ptr(0), # render_sdf | |
width, | |
height, | |
num_samples_x, | |
num_samples_y, | |
seed, | |
diffvg.float_ptr(d_background_image.data_ptr() if background_image is not None else 0), | |
diffvg.float_ptr(grad_img.data_ptr() if output_type == OutputType.color else 0), | |
diffvg.float_ptr(grad_img.data_ptr() if output_type == OutputType.sdf else 0), | |
diffvg.float_ptr(0), # d_translation | |
use_prefiltering, | |
diffvg.float_ptr(eval_positions.data_ptr()), | |
eval_positions.shape[0]) | |
time_elapsed = time.time() - start | |
global print_timing | |
if print_timing: | |
print('Backward pass, time: %.5f s' % time_elapsed) | |
d_args = [] | |
d_args.append(None) # width | |
d_args.append(None) # height | |
d_args.append(None) # num_samples_x | |
d_args.append(None) # num_samples_y | |
d_args.append(None) # seed | |
d_args.append(d_background_image) | |
d_args.append(None) # canvas_width | |
d_args.append(None) # canvas_height | |
d_args.append(None) # num_shapes | |
d_args.append(None) # num_shape_groups | |
d_args.append(None) # output_type | |
d_args.append(None) # use_prefiltering | |
d_args.append(None) # eval_positions | |
for shape_id in range(scene.num_shapes): | |
d_args.append(None) # type | |
d_shape = scene.get_d_shape(shape_id) | |
use_thickness = False | |
if d_shape.type == diffvg.ShapeType.circle: | |
d_circle = d_shape.as_circle() | |
radius = torch.tensor(d_circle.radius) | |
assert(torch.isfinite(radius).all()) | |
d_args.append(radius) | |
c = d_circle.center | |
c = torch.tensor((c.x, c.y)) | |
assert(torch.isfinite(c).all()) | |
d_args.append(c) | |
elif d_shape.type == diffvg.ShapeType.ellipse: | |
d_ellipse = d_shape.as_ellipse() | |
r = d_ellipse.radius | |
r = torch.tensor((d_ellipse.radius.x, d_ellipse.radius.y)) | |
assert(torch.isfinite(r).all()) | |
d_args.append(r) | |
c = d_ellipse.center | |
c = torch.tensor((c.x, c.y)) | |
assert(torch.isfinite(c).all()) | |
d_args.append(c) | |
elif d_shape.type == diffvg.ShapeType.path: | |
d_path = d_shape.as_path() | |
points = torch.zeros((d_path.num_points, 2)) | |
thickness = None | |
if d_path.has_thickness(): | |
use_thickness = True | |
thickness = torch.zeros(d_path.num_points) | |
d_path.copy_to(diffvg.float_ptr(points.data_ptr()), diffvg.float_ptr(thickness.data_ptr())) | |
else: | |
d_path.copy_to(diffvg.float_ptr(points.data_ptr()), diffvg.float_ptr(0)) | |
assert(torch.isfinite(points).all()) | |
if thickness is not None: | |
assert(torch.isfinite(thickness).all()) | |
d_args.append(None) # num_control_points | |
d_args.append(points) | |
d_args.append(thickness) | |
d_args.append(None) # is_closed | |
d_args.append(None) # use_distance_approx | |
elif d_shape.type == diffvg.ShapeType.rect: | |
d_rect = d_shape.as_rect() | |
p_min = torch.tensor((d_rect.p_min.x, d_rect.p_min.y)) | |
p_max = torch.tensor((d_rect.p_max.x, d_rect.p_max.y)) | |
assert(torch.isfinite(p_min).all()) | |
assert(torch.isfinite(p_max).all()) | |
d_args.append(p_min) | |
d_args.append(p_max) | |
else: | |
assert(False) | |
if use_thickness: | |
d_args.append(None) | |
else: | |
w = torch.tensor((d_shape.stroke_width)) | |
assert(torch.isfinite(w).all()) | |
d_args.append(w) | |
for group_id in range(scene.num_shape_groups): | |
d_shape_group = scene.get_d_shape_group(group_id) | |
d_args.append(None) # shape_ids | |
d_args.append(None) # fill_color_type | |
if d_shape_group.has_fill_color(): | |
if d_shape_group.fill_color_type == diffvg.ColorType.constant: | |
d_constant = d_shape_group.fill_color_as_constant() | |
c = d_constant.color | |
d_args.append(torch.tensor((c.x, c.y, c.z, c.w))) | |
elif d_shape_group.fill_color_type == diffvg.ColorType.linear_gradient: | |
d_linear_gradient = d_shape_group.fill_color_as_linear_gradient() | |
beg = d_linear_gradient.begin | |
d_args.append(torch.tensor((beg.x, beg.y))) | |
end = d_linear_gradient.end | |
d_args.append(torch.tensor((end.x, end.y))) | |
offsets = torch.zeros((d_linear_gradient.num_stops)) | |
stop_colors = torch.zeros((d_linear_gradient.num_stops, 4)) | |
d_linear_gradient.copy_to(\ | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
assert(torch.isfinite(stop_colors).all()) | |
d_args.append(offsets) | |
d_args.append(stop_colors) | |
elif d_shape_group.fill_color_type == diffvg.ColorType.radial_gradient: | |
d_radial_gradient = d_shape_group.fill_color_as_radial_gradient() | |
center = d_radial_gradient.center | |
d_args.append(torch.tensor((center.x, center.y))) | |
radius = d_radial_gradient.radius | |
d_args.append(torch.tensor((radius.x, radius.y))) | |
offsets = torch.zeros((d_radial_gradient.num_stops)) | |
stop_colors = torch.zeros((d_radial_gradient.num_stops, 4)) | |
d_radial_gradient.copy_to(\ | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
assert(torch.isfinite(stop_colors).all()) | |
d_args.append(offsets) | |
d_args.append(stop_colors) | |
else: | |
assert(False) | |
d_args.append(None) # stroke_color_type | |
if d_shape_group.has_stroke_color(): | |
if d_shape_group.stroke_color_type == diffvg.ColorType.constant: | |
d_constant = d_shape_group.stroke_color_as_constant() | |
c = d_constant.color | |
d_args.append(torch.tensor((c.x, c.y, c.z, c.w))) | |
elif d_shape_group.stroke_color_type == diffvg.ColorType.linear_gradient: | |
d_linear_gradient = d_shape_group.stroke_color_as_linear_gradient() | |
beg = d_linear_gradient.begin | |
d_args.append(torch.tensor((beg.x, beg.y))) | |
end = d_linear_gradient.end | |
d_args.append(torch.tensor((end.x, end.y))) | |
offsets = torch.zeros((d_linear_gradient.num_stops)) | |
stop_colors = torch.zeros((d_linear_gradient.num_stops, 4)) | |
d_linear_gradient.copy_to(\ | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
assert(torch.isfinite(stop_colors).all()) | |
d_args.append(offsets) | |
d_args.append(stop_colors) | |
elif d_shape_group.fill_color_type == diffvg.ColorType.radial_gradient: | |
d_radial_gradient = d_shape_group.stroke_color_as_radial_gradient() | |
center = d_radial_gradient.center | |
d_args.append(torch.tensor((center.x, center.y))) | |
radius = d_radial_gradient.radius | |
d_args.append(torch.tensor((radius.x, radius.y))) | |
offsets = torch.zeros((d_radial_gradient.num_stops)) | |
stop_colors = torch.zeros((d_radial_gradient.num_stops, 4)) | |
d_radial_gradient.copy_to(\ | |
diffvg.float_ptr(offsets.data_ptr()), | |
diffvg.float_ptr(stop_colors.data_ptr())) | |
assert(torch.isfinite(stop_colors).all()) | |
d_args.append(offsets) | |
d_args.append(stop_colors) | |
else: | |
assert(False) | |
d_args.append(None) # use_even_odd_rule | |
d_shape_to_canvas = torch.zeros((3, 3)) | |
d_shape_group.copy_to(diffvg.float_ptr(d_shape_to_canvas.data_ptr())) | |
assert(torch.isfinite(d_shape_to_canvas).all()) | |
d_args.append(d_shape_to_canvas) | |
d_args.append(None) # filter_type | |
d_args.append(torch.tensor(scene.get_d_filter_radius())) | |
return tuple(d_args) | |