Spaces:
Runtime error
Runtime error
/****************************************************************************** | |
* Copyright (c) 2011, Duane Merrill. All rights reserved. | |
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* * Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* * Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* * Neither the name of the NVIDIA CORPORATION nor the | |
* names of its contributors may be used to endorse or promote products | |
* derived from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* | |
******************************************************************************/ | |
/** | |
* \file | |
* cub::DeviceSpmv provides device-wide parallel operations for performing sparse-matrix * vector multiplication (SpMV). | |
*/ | |
#pragma once | |
#include <stdio.h> | |
#include <iterator> | |
#include <limits> | |
#include "dispatch/dispatch_spmv_orig.cuh" | |
#include "../config.cuh" | |
/// Optional outer namespace(s) | |
CUB_NS_PREFIX | |
/// CUB namespace | |
namespace cub { | |
/** | |
* \brief DeviceSpmv provides device-wide parallel operations for performing sparse-matrix * dense-vector multiplication (SpMV). | |
* \ingroup SingleModule | |
* | |
* \par Overview | |
* The [<em>SpMV computation</em>](http://en.wikipedia.org/wiki/Sparse_matrix-vector_multiplication) | |
* performs the matrix-vector operation | |
* <em>y</em> = <em>alpha</em>*<b>A</b>*<em>x</em> + <em>beta</em>*<em>y</em>, | |
* where: | |
* - <b>A</b> is an <em>m</em>x<em>n</em> sparse matrix whose non-zero structure is specified in | |
* [<em>compressed-storage-row (CSR) format</em>](http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_row_Storage_.28CRS_or_CSR.29) | |
* (i.e., three arrays: <em>values</em>, <em>row_offsets</em>, and <em>column_indices</em>) | |
* - <em>x</em> and <em>y</em> are dense vectors | |
* - <em>alpha</em> and <em>beta</em> are scalar multiplicands | |
* | |
* \par Usage Considerations | |
* \cdp_class{DeviceSpmv} | |
* | |
*/ | |
struct DeviceSpmv | |
{ | |
/******************************************************************//** | |
* \name CSR matrix operations | |
*********************************************************************/ | |
//@{ | |
/** | |
* \brief This function performs the matrix-vector operation <em>y</em> = <b>A</b>*<em>x</em>. | |
* | |
* \par Snippet | |
* The code snippet below illustrates SpMV upon a 9x9 CSR matrix <b>A</b> | |
* representing a 3x3 lattice (24 non-zeros). | |
* | |
* \par | |
* \code | |
* #include <cub/cub.cuh> // or equivalently <cub/device/device_spmv.cuh> | |
* | |
* // Declare, allocate, and initialize device-accessible pointers for input matrix A, input vector x, | |
* // and output vector y | |
* int num_rows = 9; | |
* int num_cols = 9; | |
* int num_nonzeros = 24; | |
* | |
* float* d_values; // e.g., [1, 1, 1, 1, 1, 1, 1, 1, | |
* // 1, 1, 1, 1, 1, 1, 1, 1, | |
* // 1, 1, 1, 1, 1, 1, 1, 1] | |
* | |
* int* d_column_indices; // e.g., [1, 3, 0, 2, 4, 1, 5, 0, | |
* // 4, 6, 1, 3, 5, 7, 2, 4, | |
* // 8, 3, 7, 4, 6, 8, 5, 7] | |
* | |
* int* d_row_offsets; // e.g., [0, 2, 5, 7, 10, 14, 17, 19, 22, 24] | |
* | |
* float* d_vector_x; // e.g., [1, 1, 1, 1, 1, 1, 1, 1, 1] | |
* float* d_vector_y; // e.g., [ , , , , , , , , ] | |
* ... | |
* | |
* // Determine temporary device storage requirements | |
* void* d_temp_storage = NULL; | |
* size_t temp_storage_bytes = 0; | |
* cub::DeviceSpmv::CsrMV(d_temp_storage, temp_storage_bytes, d_values, | |
* d_row_offsets, d_column_indices, d_vector_x, d_vector_y, | |
* num_rows, num_cols, num_nonzeros, alpha, beta); | |
* | |
* // Allocate temporary storage | |
* cudaMalloc(&d_temp_storage, temp_storage_bytes); | |
* | |
* // Run SpMV | |
* cub::DeviceSpmv::CsrMV(d_temp_storage, temp_storage_bytes, d_values, | |
* d_row_offsets, d_column_indices, d_vector_x, d_vector_y, | |
* num_rows, num_cols, num_nonzeros, alpha, beta); | |
* | |
* // d_vector_y <-- [2, 3, 2, 3, 4, 3, 2, 3, 2] | |
* | |
* \endcode | |
* | |
* \tparam ValueT <b>[inferred]</b> Matrix and vector value type (e.g., /p float, /p double, etc.) | |
*/ | |
template < | |
typename ValueT> | |
CUB_RUNTIME_FUNCTION | |
static cudaError_t CsrMV( | |
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. | |
size_t& temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation | |
ValueT* d_values, ///< [in] Pointer to the array of \p num_nonzeros values of the corresponding nonzero elements of matrix <b>A</b>. | |
int* d_row_offsets, ///< [in] Pointer to the array of \p m + 1 offsets demarcating the start of every row in \p d_column_indices and \p d_values (with the final entry being equal to \p num_nonzeros) | |
int* d_column_indices, ///< [in] Pointer to the array of \p num_nonzeros column-indices of the corresponding nonzero elements of matrix <b>A</b>. (Indices are zero-valued.) | |
ValueT* d_vector_x, ///< [in] Pointer to the array of \p num_cols values corresponding to the dense input vector <em>x</em> | |
ValueT* d_vector_y, ///< [out] Pointer to the array of \p num_rows values corresponding to the dense output vector <em>y</em> | |
int num_rows, ///< [in] number of rows of matrix <b>A</b>. | |
int num_cols, ///< [in] number of columns of matrix <b>A</b>. | |
int num_nonzeros, ///< [in] number of nonzero elements of matrix <b>A</b>. | |
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. | |
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. | |
{ | |
SpmvParams<ValueT, int> spmv_params; | |
spmv_params.d_values = d_values; | |
spmv_params.d_row_end_offsets = d_row_offsets + 1; | |
spmv_params.d_column_indices = d_column_indices; | |
spmv_params.d_vector_x = d_vector_x; | |
spmv_params.d_vector_y = d_vector_y; | |
spmv_params.num_rows = num_rows; | |
spmv_params.num_cols = num_cols; | |
spmv_params.num_nonzeros = num_nonzeros; | |
spmv_params.alpha = 1.0; | |
spmv_params.beta = 0.0; | |
return DispatchSpmv<ValueT, int>::Dispatch( | |
d_temp_storage, | |
temp_storage_bytes, | |
spmv_params, | |
stream, | |
debug_synchronous); | |
} | |
//@} end member group | |
}; | |
} // CUB namespace | |
CUB_NS_POSTFIX // Optional outer namespace(s) | |