Spaces:
Runtime error
Runtime error
/****************************************************************************** | |
* Copyright (c) 2011, Duane Merrill. All rights reserved. | |
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* * Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* * Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* * Neither the name of the NVIDIA CORPORATION nor the | |
* names of its contributors may be used to endorse or promote products | |
* derived from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* | |
******************************************************************************/ | |
/** | |
* \file | |
* cub::AgentRle implements a stateful abstraction of CUDA thread blocks for participating in device-wide run-length-encode. | |
*/ | |
#pragma once | |
#include <iterator> | |
#include "single_pass_scan_operators.cuh" | |
#include "../block/block_load.cuh" | |
#include "../block/block_store.cuh" | |
#include "../block/block_scan.cuh" | |
#include "../block/block_exchange.cuh" | |
#include "../block/block_discontinuity.cuh" | |
#include "../config.cuh" | |
#include "../grid/grid_queue.cuh" | |
#include "../iterator/cache_modified_input_iterator.cuh" | |
#include "../iterator/constant_input_iterator.cuh" | |
/// Optional outer namespace(s) | |
CUB_NS_PREFIX | |
/// CUB namespace | |
namespace cub { | |
/****************************************************************************** | |
* Tuning policy types | |
******************************************************************************/ | |
/** | |
* Parameterizable tuning policy type for AgentRle | |
*/ | |
template < | |
int _BLOCK_THREADS, ///< Threads per thread block | |
int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input) | |
BlockLoadAlgorithm _LOAD_ALGORITHM, ///< The BlockLoad algorithm to use | |
CacheLoadModifier _LOAD_MODIFIER, ///< Cache load modifier for reading input elements | |
bool _STORE_WARP_TIME_SLICING, ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage) | |
BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use | |
struct AgentRlePolicy | |
{ | |
enum | |
{ | |
BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block | |
ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input) | |
STORE_WARP_TIME_SLICING = _STORE_WARP_TIME_SLICING, ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage) | |
}; | |
static const BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM; ///< The BlockLoad algorithm to use | |
static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements | |
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use | |
}; | |
/****************************************************************************** | |
* Thread block abstractions | |
******************************************************************************/ | |
/** | |
* \brief AgentRle implements a stateful abstraction of CUDA thread blocks for participating in device-wide run-length-encode | |
*/ | |
template < | |
typename AgentRlePolicyT, ///< Parameterized AgentRlePolicyT tuning policy type | |
typename InputIteratorT, ///< Random-access input iterator type for data | |
typename OffsetsOutputIteratorT, ///< Random-access output iterator type for offset values | |
typename LengthsOutputIteratorT, ///< Random-access output iterator type for length values | |
typename EqualityOpT, ///< T equality operator type | |
typename OffsetT> ///< Signed integer type for global offsets | |
struct AgentRle | |
{ | |
//--------------------------------------------------------------------- | |
// Types and constants | |
//--------------------------------------------------------------------- | |
/// The input value type | |
typedef typename std::iterator_traits<InputIteratorT>::value_type T; | |
/// The lengths output value type | |
typedef typename If<(Equals<typename std::iterator_traits<LengthsOutputIteratorT>::value_type, void>::VALUE), // LengthT = (if output iterator's value type is void) ? | |
OffsetT, // ... then the OffsetT type, | |
typename std::iterator_traits<LengthsOutputIteratorT>::value_type>::Type LengthT; // ... else the output iterator's value type | |
/// Tuple type for scanning (pairs run-length and run-index) | |
typedef KeyValuePair<OffsetT, LengthT> LengthOffsetPair; | |
/// Tile status descriptor interface type | |
typedef ReduceByKeyScanTileState<LengthT, OffsetT> ScanTileStateT; | |
// Constants | |
enum | |
{ | |
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH), | |
BLOCK_THREADS = AgentRlePolicyT::BLOCK_THREADS, | |
ITEMS_PER_THREAD = AgentRlePolicyT::ITEMS_PER_THREAD, | |
WARP_ITEMS = WARP_THREADS * ITEMS_PER_THREAD, | |
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD, | |
WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS, | |
/// Whether or not to sync after loading data | |
SYNC_AFTER_LOAD = (AgentRlePolicyT::LOAD_ALGORITHM != BLOCK_LOAD_DIRECT), | |
/// Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any store-related data transpositions (versus each warp having its own storage) | |
STORE_WARP_TIME_SLICING = AgentRlePolicyT::STORE_WARP_TIME_SLICING, | |
ACTIVE_EXCHANGE_WARPS = (STORE_WARP_TIME_SLICING) ? 1 : WARPS, | |
}; | |
/** | |
* Special operator that signals all out-of-bounds items are not equal to everything else, | |
* forcing both (1) the last item to be tail-flagged and (2) all oob items to be marked | |
* trivial. | |
*/ | |
template <bool LAST_TILE> | |
struct OobInequalityOp | |
{ | |
OffsetT num_remaining; | |
EqualityOpT equality_op; | |
__device__ __forceinline__ OobInequalityOp( | |
OffsetT num_remaining, | |
EqualityOpT equality_op) | |
: | |
num_remaining(num_remaining), | |
equality_op(equality_op) | |
{} | |
template <typename Index> | |
__host__ __device__ __forceinline__ bool operator()(T first, T second, Index idx) | |
{ | |
if (!LAST_TILE || (idx < num_remaining)) | |
return !equality_op(first, second); | |
else | |
return true; | |
} | |
}; | |
// Cache-modified Input iterator wrapper type (for applying cache modifier) for data | |
typedef typename If<IsPointer<InputIteratorT>::VALUE, | |
CacheModifiedInputIterator<AgentRlePolicyT::LOAD_MODIFIER, T, OffsetT>, // Wrap the native input pointer with CacheModifiedVLengthnputIterator | |
InputIteratorT>::Type // Directly use the supplied input iterator type | |
WrappedInputIteratorT; | |
// Parameterized BlockLoad type for data | |
typedef BlockLoad< | |
T, | |
AgentRlePolicyT::BLOCK_THREADS, | |
AgentRlePolicyT::ITEMS_PER_THREAD, | |
AgentRlePolicyT::LOAD_ALGORITHM> | |
BlockLoadT; | |
// Parameterized BlockDiscontinuity type for data | |
typedef BlockDiscontinuity<T, BLOCK_THREADS> BlockDiscontinuityT; | |
// Parameterized WarpScan type | |
typedef WarpScan<LengthOffsetPair> WarpScanPairs; | |
// Reduce-length-by-run scan operator | |
typedef ReduceBySegmentOp<cub::Sum> ReduceBySegmentOpT; | |
// Callback type for obtaining tile prefix during block scan | |
typedef TilePrefixCallbackOp< | |
LengthOffsetPair, | |
ReduceBySegmentOpT, | |
ScanTileStateT> | |
TilePrefixCallbackOpT; | |
// Warp exchange types | |
typedef WarpExchange<LengthOffsetPair, ITEMS_PER_THREAD> WarpExchangePairs; | |
typedef typename If<STORE_WARP_TIME_SLICING, typename WarpExchangePairs::TempStorage, NullType>::Type WarpExchangePairsStorage; | |
typedef WarpExchange<OffsetT, ITEMS_PER_THREAD> WarpExchangeOffsets; | |
typedef WarpExchange<LengthT, ITEMS_PER_THREAD> WarpExchangeLengths; | |
typedef LengthOffsetPair WarpAggregates[WARPS]; | |
// Shared memory type for this thread block | |
struct _TempStorage | |
{ | |
// Aliasable storage layout | |
union Aliasable | |
{ | |
struct | |
{ | |
typename BlockDiscontinuityT::TempStorage discontinuity; // Smem needed for discontinuity detection | |
typename WarpScanPairs::TempStorage warp_scan[WARPS]; // Smem needed for warp-synchronous scans | |
Uninitialized<LengthOffsetPair[WARPS]> warp_aggregates; // Smem needed for sharing warp-wide aggregates | |
typename TilePrefixCallbackOpT::TempStorage prefix; // Smem needed for cooperative prefix callback | |
}; | |
// Smem needed for input loading | |
typename BlockLoadT::TempStorage load; | |
// Aliasable layout needed for two-phase scatter | |
union ScatterAliasable | |
{ | |
unsigned long long align; | |
WarpExchangePairsStorage exchange_pairs[ACTIVE_EXCHANGE_WARPS]; | |
typename WarpExchangeOffsets::TempStorage exchange_offsets[ACTIVE_EXCHANGE_WARPS]; | |
typename WarpExchangeLengths::TempStorage exchange_lengths[ACTIVE_EXCHANGE_WARPS]; | |
} scatter_aliasable; | |
} aliasable; | |
OffsetT tile_idx; // Shared tile index | |
LengthOffsetPair tile_inclusive; // Inclusive tile prefix | |
LengthOffsetPair tile_exclusive; // Exclusive tile prefix | |
}; | |
// Alias wrapper allowing storage to be unioned | |
struct TempStorage : Uninitialized<_TempStorage> {}; | |
//--------------------------------------------------------------------- | |
// Per-thread fields | |
//--------------------------------------------------------------------- | |
_TempStorage& temp_storage; ///< Reference to temp_storage | |
WrappedInputIteratorT d_in; ///< Pointer to input sequence of data items | |
OffsetsOutputIteratorT d_offsets_out; ///< Input run offsets | |
LengthsOutputIteratorT d_lengths_out; ///< Output run lengths | |
EqualityOpT equality_op; ///< T equality operator | |
ReduceBySegmentOpT scan_op; ///< Reduce-length-by-flag scan operator | |
OffsetT num_items; ///< Total number of input items | |
//--------------------------------------------------------------------- | |
// Constructor | |
//--------------------------------------------------------------------- | |
// Constructor | |
__device__ __forceinline__ | |
AgentRle( | |
TempStorage &temp_storage, ///< [in] Reference to temp_storage | |
InputIteratorT d_in, ///< [in] Pointer to input sequence of data items | |
OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run offsets | |
LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run lengths | |
EqualityOpT equality_op, ///< [in] T equality operator | |
OffsetT num_items) ///< [in] Total number of input items | |
: | |
temp_storage(temp_storage.Alias()), | |
d_in(d_in), | |
d_offsets_out(d_offsets_out), | |
d_lengths_out(d_lengths_out), | |
equality_op(equality_op), | |
scan_op(cub::Sum()), | |
num_items(num_items) | |
{} | |
//--------------------------------------------------------------------- | |
// Utility methods for initializing the selections | |
//--------------------------------------------------------------------- | |
template <bool FIRST_TILE, bool LAST_TILE> | |
__device__ __forceinline__ void InitializeSelections( | |
OffsetT tile_offset, | |
OffsetT num_remaining, | |
T (&items)[ITEMS_PER_THREAD], | |
LengthOffsetPair (&lengths_and_num_runs)[ITEMS_PER_THREAD]) | |
{ | |
bool head_flags[ITEMS_PER_THREAD]; | |
bool tail_flags[ITEMS_PER_THREAD]; | |
OobInequalityOp<LAST_TILE> inequality_op(num_remaining, equality_op); | |
if (FIRST_TILE && LAST_TILE) | |
{ | |
// First-and-last-tile always head-flags the first item and tail-flags the last item | |
BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails( | |
head_flags, tail_flags, items, inequality_op); | |
} | |
else if (FIRST_TILE) | |
{ | |
// First-tile always head-flags the first item | |
// Get the first item from the next tile | |
T tile_successor_item; | |
if (threadIdx.x == BLOCK_THREADS - 1) | |
tile_successor_item = d_in[tile_offset + TILE_ITEMS]; | |
BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails( | |
head_flags, tail_flags, tile_successor_item, items, inequality_op); | |
} | |
else if (LAST_TILE) | |
{ | |
// Last-tile always flags the last item | |
// Get the last item from the previous tile | |
T tile_predecessor_item; | |
if (threadIdx.x == 0) | |
tile_predecessor_item = d_in[tile_offset - 1]; | |
BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails( | |
head_flags, tile_predecessor_item, tail_flags, items, inequality_op); | |
} | |
else | |
{ | |
// Get the first item from the next tile | |
T tile_successor_item; | |
if (threadIdx.x == BLOCK_THREADS - 1) | |
tile_successor_item = d_in[tile_offset + TILE_ITEMS]; | |
// Get the last item from the previous tile | |
T tile_predecessor_item; | |
if (threadIdx.x == 0) | |
tile_predecessor_item = d_in[tile_offset - 1]; | |
BlockDiscontinuityT(temp_storage.aliasable.discontinuity).FlagHeadsAndTails( | |
head_flags, tile_predecessor_item, tail_flags, tile_successor_item, items, inequality_op); | |
} | |
// Zip counts and runs | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM) | |
{ | |
lengths_and_num_runs[ITEM].key = head_flags[ITEM] && (!tail_flags[ITEM]); | |
lengths_and_num_runs[ITEM].value = ((!head_flags[ITEM]) || (!tail_flags[ITEM])); | |
} | |
} | |
//--------------------------------------------------------------------- | |
// Scan utility methods | |
//--------------------------------------------------------------------- | |
/** | |
* Scan of allocations | |
*/ | |
__device__ __forceinline__ void WarpScanAllocations( | |
LengthOffsetPair &tile_aggregate, | |
LengthOffsetPair &warp_aggregate, | |
LengthOffsetPair &warp_exclusive_in_tile, | |
LengthOffsetPair &thread_exclusive_in_warp, | |
LengthOffsetPair (&lengths_and_num_runs)[ITEMS_PER_THREAD]) | |
{ | |
// Perform warpscans | |
unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS); | |
int lane_id = LaneId(); | |
LengthOffsetPair identity; | |
identity.key = 0; | |
identity.value = 0; | |
LengthOffsetPair thread_inclusive; | |
LengthOffsetPair thread_aggregate = internal::ThreadReduce(lengths_and_num_runs, scan_op); | |
WarpScanPairs(temp_storage.aliasable.warp_scan[warp_id]).Scan( | |
thread_aggregate, | |
thread_inclusive, | |
thread_exclusive_in_warp, | |
identity, | |
scan_op); | |
// Last lane in each warp shares its warp-aggregate | |
if (lane_id == WARP_THREADS - 1) | |
temp_storage.aliasable.warp_aggregates.Alias()[warp_id] = thread_inclusive; | |
CTA_SYNC(); | |
// Accumulate total selected and the warp-wide prefix | |
warp_exclusive_in_tile = identity; | |
warp_aggregate = temp_storage.aliasable.warp_aggregates.Alias()[warp_id]; | |
tile_aggregate = temp_storage.aliasable.warp_aggregates.Alias()[0]; | |
#pragma unroll | |
for (int WARP = 1; WARP < WARPS; ++WARP) | |
{ | |
if (warp_id == WARP) | |
warp_exclusive_in_tile = tile_aggregate; | |
tile_aggregate = scan_op(tile_aggregate, temp_storage.aliasable.warp_aggregates.Alias()[WARP]); | |
} | |
} | |
//--------------------------------------------------------------------- | |
// Utility methods for scattering selections | |
//--------------------------------------------------------------------- | |
/** | |
* Two-phase scatter, specialized for warp time-slicing | |
*/ | |
template <bool FIRST_TILE> | |
__device__ __forceinline__ void ScatterTwoPhase( | |
OffsetT tile_num_runs_exclusive_in_global, | |
OffsetT warp_num_runs_aggregate, | |
OffsetT warp_num_runs_exclusive_in_tile, | |
OffsetT (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD], | |
LengthOffsetPair (&lengths_and_offsets)[ITEMS_PER_THREAD], | |
Int2Type<true> is_warp_time_slice) | |
{ | |
unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS); | |
int lane_id = LaneId(); | |
// Locally compact items within the warp (first warp) | |
if (warp_id == 0) | |
{ | |
WarpExchangePairs(temp_storage.aliasable.scatter_aliasable.exchange_pairs[0]).ScatterToStriped( | |
lengths_and_offsets, thread_num_runs_exclusive_in_warp); | |
} | |
// Locally compact items within the warp (remaining warps) | |
#pragma unroll | |
for (int SLICE = 1; SLICE < WARPS; ++SLICE) | |
{ | |
CTA_SYNC(); | |
if (warp_id == SLICE) | |
{ | |
WarpExchangePairs(temp_storage.aliasable.scatter_aliasable.exchange_pairs[0]).ScatterToStriped( | |
lengths_and_offsets, thread_num_runs_exclusive_in_warp); | |
} | |
} | |
// Global scatter | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) | |
{ | |
if ((ITEM * WARP_THREADS) < warp_num_runs_aggregate - lane_id) | |
{ | |
OffsetT item_offset = | |
tile_num_runs_exclusive_in_global + | |
warp_num_runs_exclusive_in_tile + | |
(ITEM * WARP_THREADS) + lane_id; | |
// Scatter offset | |
d_offsets_out[item_offset] = lengths_and_offsets[ITEM].key; | |
// Scatter length if not the first (global) length | |
if ((!FIRST_TILE) || (ITEM != 0) || (threadIdx.x > 0)) | |
{ | |
d_lengths_out[item_offset - 1] = lengths_and_offsets[ITEM].value; | |
} | |
} | |
} | |
} | |
/** | |
* Two-phase scatter | |
*/ | |
template <bool FIRST_TILE> | |
__device__ __forceinline__ void ScatterTwoPhase( | |
OffsetT tile_num_runs_exclusive_in_global, | |
OffsetT warp_num_runs_aggregate, | |
OffsetT warp_num_runs_exclusive_in_tile, | |
OffsetT (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD], | |
LengthOffsetPair (&lengths_and_offsets)[ITEMS_PER_THREAD], | |
Int2Type<false> is_warp_time_slice) | |
{ | |
unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS); | |
int lane_id = LaneId(); | |
// Unzip | |
OffsetT run_offsets[ITEMS_PER_THREAD]; | |
LengthT run_lengths[ITEMS_PER_THREAD]; | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) | |
{ | |
run_offsets[ITEM] = lengths_and_offsets[ITEM].key; | |
run_lengths[ITEM] = lengths_and_offsets[ITEM].value; | |
} | |
WarpExchangeOffsets(temp_storage.aliasable.scatter_aliasable.exchange_offsets[warp_id]).ScatterToStriped( | |
run_offsets, thread_num_runs_exclusive_in_warp); | |
WARP_SYNC(0xffffffff); | |
WarpExchangeLengths(temp_storage.aliasable.scatter_aliasable.exchange_lengths[warp_id]).ScatterToStriped( | |
run_lengths, thread_num_runs_exclusive_in_warp); | |
// Global scatter | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) | |
{ | |
if ((ITEM * WARP_THREADS) + lane_id < warp_num_runs_aggregate) | |
{ | |
OffsetT item_offset = | |
tile_num_runs_exclusive_in_global + | |
warp_num_runs_exclusive_in_tile + | |
(ITEM * WARP_THREADS) + lane_id; | |
// Scatter offset | |
d_offsets_out[item_offset] = run_offsets[ITEM]; | |
// Scatter length if not the first (global) length | |
if ((!FIRST_TILE) || (ITEM != 0) || (threadIdx.x > 0)) | |
{ | |
d_lengths_out[item_offset - 1] = run_lengths[ITEM]; | |
} | |
} | |
} | |
} | |
/** | |
* Direct scatter | |
*/ | |
template <bool FIRST_TILE> | |
__device__ __forceinline__ void ScatterDirect( | |
OffsetT tile_num_runs_exclusive_in_global, | |
OffsetT warp_num_runs_aggregate, | |
OffsetT warp_num_runs_exclusive_in_tile, | |
OffsetT (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD], | |
LengthOffsetPair (&lengths_and_offsets)[ITEMS_PER_THREAD]) | |
{ | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM) | |
{ | |
if (thread_num_runs_exclusive_in_warp[ITEM] < warp_num_runs_aggregate) | |
{ | |
OffsetT item_offset = | |
tile_num_runs_exclusive_in_global + | |
warp_num_runs_exclusive_in_tile + | |
thread_num_runs_exclusive_in_warp[ITEM]; | |
// Scatter offset | |
d_offsets_out[item_offset] = lengths_and_offsets[ITEM].key; | |
// Scatter length if not the first (global) length | |
if (item_offset >= 1) | |
{ | |
d_lengths_out[item_offset - 1] = lengths_and_offsets[ITEM].value; | |
} | |
} | |
} | |
} | |
/** | |
* Scatter | |
*/ | |
template <bool FIRST_TILE> | |
__device__ __forceinline__ void Scatter( | |
OffsetT tile_num_runs_aggregate, | |
OffsetT tile_num_runs_exclusive_in_global, | |
OffsetT warp_num_runs_aggregate, | |
OffsetT warp_num_runs_exclusive_in_tile, | |
OffsetT (&thread_num_runs_exclusive_in_warp)[ITEMS_PER_THREAD], | |
LengthOffsetPair (&lengths_and_offsets)[ITEMS_PER_THREAD]) | |
{ | |
if ((ITEMS_PER_THREAD == 1) || (tile_num_runs_aggregate < BLOCK_THREADS)) | |
{ | |
// Direct scatter if the warp has any items | |
if (warp_num_runs_aggregate) | |
{ | |
ScatterDirect<FIRST_TILE>( | |
tile_num_runs_exclusive_in_global, | |
warp_num_runs_aggregate, | |
warp_num_runs_exclusive_in_tile, | |
thread_num_runs_exclusive_in_warp, | |
lengths_and_offsets); | |
} | |
} | |
else | |
{ | |
// Scatter two phase | |
ScatterTwoPhase<FIRST_TILE>( | |
tile_num_runs_exclusive_in_global, | |
warp_num_runs_aggregate, | |
warp_num_runs_exclusive_in_tile, | |
thread_num_runs_exclusive_in_warp, | |
lengths_and_offsets, | |
Int2Type<STORE_WARP_TIME_SLICING>()); | |
} | |
} | |
//--------------------------------------------------------------------- | |
// Cooperatively scan a device-wide sequence of tiles with other CTAs | |
//--------------------------------------------------------------------- | |
/** | |
* Process a tile of input (dynamic chained scan) | |
*/ | |
template < | |
bool LAST_TILE> | |
__device__ __forceinline__ LengthOffsetPair ConsumeTile( | |
OffsetT num_items, ///< Total number of global input items | |
OffsetT num_remaining, ///< Number of global input items remaining (including this tile) | |
int tile_idx, ///< Tile index | |
OffsetT tile_offset, ///< Tile offset | |
ScanTileStateT &tile_status) ///< Global list of tile status | |
{ | |
if (tile_idx == 0) | |
{ | |
// First tile | |
// Load items | |
T items[ITEMS_PER_THREAD]; | |
if (LAST_TILE) | |
BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items, num_remaining, T()); | |
else | |
BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items); | |
if (SYNC_AFTER_LOAD) | |
CTA_SYNC(); | |
// Set flags | |
LengthOffsetPair lengths_and_num_runs[ITEMS_PER_THREAD]; | |
InitializeSelections<true, LAST_TILE>( | |
tile_offset, | |
num_remaining, | |
items, | |
lengths_and_num_runs); | |
// Exclusive scan of lengths and runs | |
LengthOffsetPair tile_aggregate; | |
LengthOffsetPair warp_aggregate; | |
LengthOffsetPair warp_exclusive_in_tile; | |
LengthOffsetPair thread_exclusive_in_warp; | |
WarpScanAllocations( | |
tile_aggregate, | |
warp_aggregate, | |
warp_exclusive_in_tile, | |
thread_exclusive_in_warp, | |
lengths_and_num_runs); | |
// Update tile status if this is not the last tile | |
if (!LAST_TILE && (threadIdx.x == 0)) | |
tile_status.SetInclusive(0, tile_aggregate); | |
// Update thread_exclusive_in_warp to fold in warp run-length | |
if (thread_exclusive_in_warp.key == 0) | |
thread_exclusive_in_warp.value += warp_exclusive_in_tile.value; | |
LengthOffsetPair lengths_and_offsets[ITEMS_PER_THREAD]; | |
OffsetT thread_num_runs_exclusive_in_warp[ITEMS_PER_THREAD]; | |
LengthOffsetPair lengths_and_num_runs2[ITEMS_PER_THREAD]; | |
// Downsweep scan through lengths_and_num_runs | |
internal::ThreadScanExclusive(lengths_and_num_runs, lengths_and_num_runs2, scan_op, thread_exclusive_in_warp); | |
// Zip | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) | |
{ | |
lengths_and_offsets[ITEM].value = lengths_and_num_runs2[ITEM].value; | |
lengths_and_offsets[ITEM].key = tile_offset + (threadIdx.x * ITEMS_PER_THREAD) + ITEM; | |
thread_num_runs_exclusive_in_warp[ITEM] = (lengths_and_num_runs[ITEM].key) ? | |
lengths_and_num_runs2[ITEM].key : // keep | |
WARP_THREADS * ITEMS_PER_THREAD; // discard | |
} | |
OffsetT tile_num_runs_aggregate = tile_aggregate.key; | |
OffsetT tile_num_runs_exclusive_in_global = 0; | |
OffsetT warp_num_runs_aggregate = warp_aggregate.key; | |
OffsetT warp_num_runs_exclusive_in_tile = warp_exclusive_in_tile.key; | |
// Scatter | |
Scatter<true>( | |
tile_num_runs_aggregate, | |
tile_num_runs_exclusive_in_global, | |
warp_num_runs_aggregate, | |
warp_num_runs_exclusive_in_tile, | |
thread_num_runs_exclusive_in_warp, | |
lengths_and_offsets); | |
// Return running total (inclusive of this tile) | |
return tile_aggregate; | |
} | |
else | |
{ | |
// Not first tile | |
// Load items | |
T items[ITEMS_PER_THREAD]; | |
if (LAST_TILE) | |
BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items, num_remaining, T()); | |
else | |
BlockLoadT(temp_storage.aliasable.load).Load(d_in + tile_offset, items); | |
if (SYNC_AFTER_LOAD) | |
CTA_SYNC(); | |
// Set flags | |
LengthOffsetPair lengths_and_num_runs[ITEMS_PER_THREAD]; | |
InitializeSelections<false, LAST_TILE>( | |
tile_offset, | |
num_remaining, | |
items, | |
lengths_and_num_runs); | |
// Exclusive scan of lengths and runs | |
LengthOffsetPair tile_aggregate; | |
LengthOffsetPair warp_aggregate; | |
LengthOffsetPair warp_exclusive_in_tile; | |
LengthOffsetPair thread_exclusive_in_warp; | |
WarpScanAllocations( | |
tile_aggregate, | |
warp_aggregate, | |
warp_exclusive_in_tile, | |
thread_exclusive_in_warp, | |
lengths_and_num_runs); | |
// First warp computes tile prefix in lane 0 | |
TilePrefixCallbackOpT prefix_op(tile_status, temp_storage.aliasable.prefix, Sum(), tile_idx); | |
unsigned int warp_id = ((WARPS == 1) ? 0 : threadIdx.x / WARP_THREADS); | |
if (warp_id == 0) | |
{ | |
prefix_op(tile_aggregate); | |
if (threadIdx.x == 0) | |
temp_storage.tile_exclusive = prefix_op.exclusive_prefix; | |
} | |
CTA_SYNC(); | |
LengthOffsetPair tile_exclusive_in_global = temp_storage.tile_exclusive; | |
// Update thread_exclusive_in_warp to fold in warp and tile run-lengths | |
LengthOffsetPair thread_exclusive = scan_op(tile_exclusive_in_global, warp_exclusive_in_tile); | |
if (thread_exclusive_in_warp.key == 0) | |
thread_exclusive_in_warp.value += thread_exclusive.value; | |
// Downsweep scan through lengths_and_num_runs | |
LengthOffsetPair lengths_and_num_runs2[ITEMS_PER_THREAD]; | |
LengthOffsetPair lengths_and_offsets[ITEMS_PER_THREAD]; | |
OffsetT thread_num_runs_exclusive_in_warp[ITEMS_PER_THREAD]; | |
internal::ThreadScanExclusive(lengths_and_num_runs, lengths_and_num_runs2, scan_op, thread_exclusive_in_warp); | |
// Zip | |
#pragma unroll | |
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) | |
{ | |
lengths_and_offsets[ITEM].value = lengths_and_num_runs2[ITEM].value; | |
lengths_and_offsets[ITEM].key = tile_offset + (threadIdx.x * ITEMS_PER_THREAD) + ITEM; | |
thread_num_runs_exclusive_in_warp[ITEM] = (lengths_and_num_runs[ITEM].key) ? | |
lengths_and_num_runs2[ITEM].key : // keep | |
WARP_THREADS * ITEMS_PER_THREAD; // discard | |
} | |
OffsetT tile_num_runs_aggregate = tile_aggregate.key; | |
OffsetT tile_num_runs_exclusive_in_global = tile_exclusive_in_global.key; | |
OffsetT warp_num_runs_aggregate = warp_aggregate.key; | |
OffsetT warp_num_runs_exclusive_in_tile = warp_exclusive_in_tile.key; | |
// Scatter | |
Scatter<false>( | |
tile_num_runs_aggregate, | |
tile_num_runs_exclusive_in_global, | |
warp_num_runs_aggregate, | |
warp_num_runs_exclusive_in_tile, | |
thread_num_runs_exclusive_in_warp, | |
lengths_and_offsets); | |
// Return running total (inclusive of this tile) | |
return prefix_op.inclusive_prefix; | |
} | |
} | |
/** | |
* Scan tiles of items as part of a dynamic chained scan | |
*/ | |
template <typename NumRunsIteratorT> ///< Output iterator type for recording number of items selected | |
__device__ __forceinline__ void ConsumeRange( | |
int num_tiles, ///< Total number of input tiles | |
ScanTileStateT& tile_status, ///< Global list of tile status | |
NumRunsIteratorT d_num_runs_out) ///< Output pointer for total number of runs identified | |
{ | |
// Blocks are launched in increasing order, so just assign one tile per block | |
int tile_idx = (blockIdx.x * gridDim.y) + blockIdx.y; // Current tile index | |
OffsetT tile_offset = tile_idx * TILE_ITEMS; // Global offset for the current tile | |
OffsetT num_remaining = num_items - tile_offset; // Remaining items (including this tile) | |
if (tile_idx < num_tiles - 1) | |
{ | |
// Not the last tile (full) | |
ConsumeTile<false>(num_items, num_remaining, tile_idx, tile_offset, tile_status); | |
} | |
else if (num_remaining > 0) | |
{ | |
// The last tile (possibly partially-full) | |
LengthOffsetPair running_total = ConsumeTile<true>(num_items, num_remaining, tile_idx, tile_offset, tile_status); | |
if (threadIdx.x == 0) | |
{ | |
// Output the total number of items selected | |
*d_num_runs_out = running_total.key; | |
// The inclusive prefix contains accumulated length reduction for the last run | |
if (running_total.key > 0) | |
d_lengths_out[running_total.key - 1] = running_total.value; | |
} | |
} | |
} | |
}; | |
} // CUB namespace | |
CUB_NS_POSTFIX // Optional outer namespace(s) | |