LIVE / DiffVG /thrust /examples /padded_grid_reduction.cu
Xu Ma
update
be11144
raw
history blame
3.97 kB
#include <thrust/transform_reduce.h>
#include <thrust/functional.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/random.h>
#include <thrust/extrema.h>
#include <cmath>
#include <iomanip>
#include <float.h>
// This example computes the minimum and maximum values
// over a padded grid. The padded values are not considered
// during the reduction operation.
// transform a tuple (int,value) into a tuple (bool,value,value)
// where the bool is true for valid grid values and false for
// values in the padded region of the grid
template <typename IndexType, typename ValueType>
struct transform_tuple :
public thrust::unary_function< thrust::tuple<IndexType,ValueType>,
thrust::tuple<bool,ValueType,ValueType> >
{
typedef typename thrust::tuple<IndexType,ValueType> InputTuple;
typedef typename thrust::tuple<bool,ValueType,ValueType> OutputTuple;
IndexType n, N;
transform_tuple(IndexType n, IndexType N) : n(n), N(N) {}
__host__ __device__
OutputTuple operator()(const InputTuple& t) const
{
bool is_valid = (thrust::get<0>(t) % N) < n;
return OutputTuple(is_valid, thrust::get<1>(t), thrust::get<1>(t));
}
};
// reduce two tuples (bool,value,value) into a single tuple such that output
// contains the smallest and largest *valid* values.
template <typename IndexType, typename ValueType>
struct reduce_tuple :
public thrust::binary_function< thrust::tuple<bool,ValueType,ValueType>,
thrust::tuple<bool,ValueType,ValueType>,
thrust::tuple<bool,ValueType,ValueType> >
{
typedef typename thrust::tuple<bool,ValueType,ValueType> Tuple;
__host__ __device__
Tuple operator()(const Tuple& t0, const Tuple& t1) const
{
if(thrust::get<0>(t0) && thrust::get<0>(t1)) // both valid
return Tuple(true,
thrust::min(thrust::get<1>(t0), thrust::get<1>(t1)),
thrust::max(thrust::get<2>(t0), thrust::get<2>(t1)));
else if (thrust::get<0>(t0))
return t0;
else if (thrust::get<0>(t1))
return t1;
else
return t1; // if neither is valid then it doesn't matter what we return
}
};
int main(void)
{
int M = 10; // number of rows
int n = 11; // number of columns excluding padding
int N = 16; // number of columns including padding
thrust::default_random_engine rng(12345);
thrust::uniform_real_distribution<float> dist(0.0f, 1.0f);
thrust::device_vector<float> data(M * N, -1);
// initialize valid values in grid
for(int i = 0; i < M; i++)
for(int j = 0; j < n; j++)
data[i * N + j] = dist(rng);
// print full grid
std::cout << "padded grid" << std::endl;
std::cout << std::fixed << std::setprecision(4);
for(int i = 0; i < M; i++)
{
std::cout << " ";
for(int j = 0; j < N; j++)
{
std::cout << data[i * N + j] << " ";
}
std::cout << "\n";
}
std::cout << "\n";
// compute min & max over valid region of the 2d grid
typedef thrust::tuple<bool, float, float> result_type;
result_type init(true, FLT_MAX, -FLT_MAX); // initial value
transform_tuple<int,float> unary_op(n, N); // transformation operator
reduce_tuple<int,float> binary_op; // reduction operator
result_type result =
thrust::transform_reduce(
thrust::make_zip_iterator(thrust::make_tuple(thrust::counting_iterator<int>(0), data.begin())),
thrust::make_zip_iterator(thrust::make_tuple(thrust::counting_iterator<int>(0), data.begin())) + data.size(),
unary_op,
init,
binary_op);
std::cout << "minimum value: " << thrust::get<1>(result) << std::endl;
std::cout << "maximum value: " << thrust::get<2>(result) << std::endl;
return 0;
}