LIVE / thrust /dependencies /cub /test /test_device_reduce_by_key.cu
Xu Ma
update
1c3c0d9
raw
history blame
30.4 kB
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* Test of DeviceReduce::ReduceByKey utilities
******************************************************************************/
// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR
#include <stdio.h>
#include <typeinfo>
#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/iterator/constant_iterator.h>
#include <cub/util_allocator.cuh>
#include <cub/iterator/constant_input_iterator.cuh>
#include <cub/device/device_reduce.cuh>
#include <cub/device/device_run_length_encode.cuh>
#include <cub/thread/thread_operators.cuh>
#include "test_util.h"
using namespace cub;
//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------
bool g_verbose = false;
int g_timing_iterations = 0;
int g_repeat = 0;
CachingDeviceAllocator g_allocator(true);
// Dispatch types
enum Backend
{
CUB, // CUB method
THRUST, // Thrust method
CDP, // GPU-based (dynamic parallelism) dispatch to CUB method
};
//---------------------------------------------------------------------
// Dispatch to different CUB entrypoints
//---------------------------------------------------------------------
/**
* Dispatch to reduce-by-key entrypoint
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
Int2Type<CUB> /*dispatch_to*/,
int timing_timing_iterations,
size_t */*d_temp_storage_bytes*/,
cudaError_t */*d_cdp_error*/,
void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT /*equality_op*/,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
cudaError_t error = cudaSuccess;
for (int i = 0; i < timing_timing_iterations; ++i)
{
error = DeviceReduce::ReduceByKey(
d_temp_storage,
temp_storage_bytes,
d_keys_in,
d_keys_out,
d_values_in,
d_values_out,
d_num_runs,
reduction_op,
num_items,
stream,
debug_synchronous);
}
return error;
}
//---------------------------------------------------------------------
// Dispatch to different Thrust entrypoints
//---------------------------------------------------------------------
/**
* Dispatch to reduce-by-key entrypoint
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
cudaError_t Dispatch(
Int2Type<THRUST> /*dispatch_to*/,
int timing_timing_iterations,
size_t */*d_temp_storage_bytes*/,
cudaError_t */*d_cdp_error*/,
void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT /*equality_op*/,
ReductionOpT /*reduction_op*/,
OffsetT num_items,
cudaStream_t /*stream*/,
bool /*debug_synchronous*/)
{
// The input keys type
typedef typename std::iterator_traits<KeyInputIteratorT>::value_type KeyInputT;
// The output keys type
typedef typename If<(Equals<typename std::iterator_traits<KeyOutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<KeyInputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<KeyOutputIteratorT>::value_type>::Type KeyOutputT; // ... else the output iterator's value type
// The input values type
typedef typename std::iterator_traits<ValueInputIteratorT>::value_type ValueInputT;
// The output values type
typedef typename If<(Equals<typename std::iterator_traits<ValueOutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<ValueInputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<ValueOutputIteratorT>::value_type>::Type ValueOuputT; // ... else the output iterator's value type
if (d_temp_storage == 0)
{
temp_storage_bytes = 1;
}
else
{
thrust::device_ptr<KeyInputT> d_keys_in_wrapper(d_keys_in);
thrust::device_ptr<KeyOutputT> d_keys_out_wrapper(d_keys_out);
thrust::device_ptr<ValueInputT> d_values_in_wrapper(d_values_in);
thrust::device_ptr<ValueOuputT> d_values_out_wrapper(d_values_out);
thrust::pair<thrust::device_ptr<KeyOutputT>, thrust::device_ptr<ValueOuputT> > d_out_ends;
for (int i = 0; i < timing_timing_iterations; ++i)
{
d_out_ends = thrust::reduce_by_key(
d_keys_in_wrapper,
d_keys_in_wrapper + num_items,
d_values_in_wrapper,
d_keys_out_wrapper,
d_values_out_wrapper);
}
OffsetT num_segments = OffsetT(d_out_ends.first - d_keys_out_wrapper);
CubDebugExit(cudaMemcpy(d_num_runs, &num_segments, sizeof(OffsetT), cudaMemcpyHostToDevice));
}
return cudaSuccess;
}
//---------------------------------------------------------------------
// CUDA Nested Parallelism Test Kernel
//---------------------------------------------------------------------
/**
* Simple wrapper kernel to invoke DeviceSelect
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
__global__ void CnpDispatchKernel(
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void *d_temp_storage,
size_t temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT equality_op,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
#ifndef CUB_CDP
*d_cdp_error = cudaErrorNotSupported;
#else
*d_cdp_error = Dispatch(Int2Type<CUB>(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, debug_synchronous);
*d_temp_storage_bytes = temp_storage_bytes;
#endif
}
/**
* Dispatch to CDP kernel
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
Int2Type<CDP> dispatch_to,
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT equality_op,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
// Invoke kernel to invoke device-side dispatch
CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, debug_synchronous);
// Copy out temp_storage_bytes
CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));
// Copy out error
cudaError_t retval;
CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
return retval;
}
//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------
/**
* Initialize problem
*/
template <typename T>
void Initialize(
int entropy_reduction,
T *h_in,
int num_items,
int max_segment)
{
unsigned int max_int = (unsigned int) -1;
int key = 0;
int i = 0;
while (i < num_items)
{
// Select number of repeating occurrences
int repeat;
if (max_segment < 0)
{
repeat = num_items;
}
else if (max_segment < 2)
{
repeat = 1;
}
else
{
RandomBits(repeat, entropy_reduction);
repeat = (int) ((double(repeat) * double(max_segment)) / double(max_int));
repeat = CUB_MAX(1, repeat);
}
int j = i;
while (j < CUB_MIN(i + repeat, num_items))
{
InitValue(INTEGER_SEED, h_in[j], key);
j++;
}
i = j;
key++;
}
if (g_verbose)
{
printf("Input:\n");
DisplayResults(h_in, num_items);
printf("\n\n");
}
}
/**
* Solve problem. Returns total number of segments identified
*/
template <
typename KeyInputIteratorT,
typename ValueInputIteratorT,
typename KeyT,
typename ValueT,
typename EqualityOpT,
typename ReductionOpT>
int Solve(
KeyInputIteratorT h_keys_in,
KeyT *h_keys_reference,
ValueInputIteratorT h_values_in,
ValueT *h_values_reference,
EqualityOpT equality_op,
ReductionOpT reduction_op,
int num_items)
{
// First item
KeyT previous = h_keys_in[0];
ValueT aggregate = h_values_in[0];
int num_segments = 0;
// Subsequent items
for (int i = 1; i < num_items; ++i)
{
if (!equality_op(previous, h_keys_in[i]))
{
h_keys_reference[num_segments] = previous;
h_values_reference[num_segments] = aggregate;
num_segments++;
aggregate = h_values_in[i];
}
else
{
aggregate = reduction_op(aggregate, h_values_in[i]);
}
previous = h_keys_in[i];
}
h_keys_reference[num_segments] = previous;
h_values_reference[num_segments] = aggregate;
num_segments++;
return num_segments;
}
/**
* Test DeviceSelect for a given problem input
*/
template <
Backend BACKEND,
typename DeviceKeyInputIteratorT,
typename DeviceValueInputIteratorT,
typename KeyT,
typename ValueT,
typename EqualityOpT,
typename ReductionOpT>
void Test(
DeviceKeyInputIteratorT d_keys_in,
DeviceValueInputIteratorT d_values_in,
KeyT* h_keys_reference,
ValueT* h_values_reference,
EqualityOpT equality_op,
ReductionOpT reduction_op,
int num_segments,
int num_items)
{
// Allocate device output arrays and number of segments
KeyT* d_keys_out = NULL;
ValueT* d_values_out = NULL;
int* d_num_runs = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_out, sizeof(KeyT) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values_out, sizeof(ValueT) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_num_runs, sizeof(int)));
// Allocate CDP device arrays
size_t *d_temp_storage_bytes = NULL;
cudaError_t *d_cdp_error = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, true));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Clear device output arrays
CubDebugExit(cudaMemset(d_keys_out, 0, sizeof(KeyT) * num_items));
CubDebugExit(cudaMemset(d_values_out, 0, sizeof(ValueT) * num_items));
CubDebugExit(cudaMemset(d_num_runs, 0, sizeof(int)));
// Run warmup/correctness iteration
CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, true));
// Check for correctness (and display results, if specified)
int compare1 = CompareDeviceResults(h_keys_reference, d_keys_out, num_segments, true, g_verbose);
printf("\t Keys %s ", compare1 ? "FAIL" : "PASS");
int compare2 = CompareDeviceResults(h_values_reference, d_values_out, num_segments, true, g_verbose);
printf("\t Values %s ", compare2 ? "FAIL" : "PASS");
int compare3 = CompareDeviceResults(&num_segments, d_num_runs, 1, true, g_verbose);
printf("\t Count %s ", compare3 ? "FAIL" : "PASS");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Performance
GpuTimer gpu_timer;
gpu_timer.Start();
CubDebugExit(Dispatch(Int2Type<BACKEND>(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, false));
gpu_timer.Stop();
float elapsed_millis = gpu_timer.ElapsedMillis();
// Display performance
if (g_timing_iterations > 0)
{
float avg_millis = elapsed_millis / g_timing_iterations;
float giga_rate = float(num_items) / avg_millis / 1000.0f / 1000.0f;
int bytes_moved = ((num_items + num_segments) * sizeof(KeyT)) + ((num_items + num_segments) * sizeof(ValueT));
float giga_bandwidth = float(bytes_moved) / avg_millis / 1000.0f / 1000.0f;
printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth);
}
printf("\n\n");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Cleanup
if (d_keys_out) CubDebugExit(g_allocator.DeviceFree(d_keys_out));
if (d_values_out) CubDebugExit(g_allocator.DeviceFree(d_values_out));
if (d_num_runs) CubDebugExit(g_allocator.DeviceFree(d_num_runs));
if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
// Correctness asserts
AssertEquals(0, compare1 | compare2 | compare3);
}
/**
* Test DeviceSelect on pointer type
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestPointer(
int num_items,
int entropy_reduction,
int max_segment,
ReductionOpT reduction_op)
{
// Allocate host arrays
KeyT* h_keys_in = new KeyT[num_items];
KeyT* h_keys_reference = new KeyT[num_items];
ValueT* h_values_in = new ValueT[num_items];
ValueT* h_values_reference = new ValueT[num_items];
for (int i = 0; i < num_items; ++i)
InitValue(INTEGER_SEED, h_values_in[i], 1);
// Initialize problem and solution
Equality equality_op;
Initialize(entropy_reduction, h_keys_in, num_items, max_segment);
int num_segments = Solve(h_keys_in, h_keys_reference, h_values_in, h_values_reference, equality_op, reduction_op, num_items);
printf("\nPointer %s cub::DeviceReduce::ReduceByKey %s reduction of %d items, %d segments (avg run length %.3f), {%s,%s} key value pairs, max_segment %d, entropy_reduction %d\n",
(BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
(Equals<ReductionOpT, Sum>::VALUE) ? "Sum" : "Max",
num_items, num_segments, float(num_items) / num_segments,
typeid(KeyT).name(), typeid(ValueT).name(),
max_segment, entropy_reduction);
fflush(stdout);
// Allocate problem device arrays
KeyT *d_keys_in = NULL;
ValueT *d_values_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_in, sizeof(KeyT) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values_in, sizeof(ValueT) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_keys_in, h_keys_in, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
CubDebugExit(cudaMemcpy(d_values_in, h_values_in, sizeof(ValueT) * num_items, cudaMemcpyHostToDevice));
// Run Test
Test<BACKEND>(d_keys_in, d_values_in, h_keys_reference, h_values_reference, equality_op, reduction_op, num_segments, num_items);
// Cleanup
if (h_keys_in) delete[] h_keys_in;
if (h_values_in) delete[] h_values_in;
if (h_keys_reference) delete[] h_keys_reference;
if (h_values_reference) delete[] h_values_reference;
if (d_keys_in) CubDebugExit(g_allocator.DeviceFree(d_keys_in));
if (d_values_in) CubDebugExit(g_allocator.DeviceFree(d_values_in));
}
/**
* Test on iterator type
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestIterator(
int num_items,
int entropy_reduction,
int max_segment,
ReductionOpT reduction_op)
{
// Allocate host arrays
KeyT* h_keys_in = new KeyT[num_items];
KeyT* h_keys_reference = new KeyT[num_items];
ValueT one_val;
InitValue(INTEGER_SEED, one_val, 1);
ConstantInputIterator<ValueT, int> h_values_in(one_val);
ValueT* h_values_reference = new ValueT[num_items];
// Initialize problem and solution
Equality equality_op;
Initialize(entropy_reduction, h_keys_in, num_items, max_segment);
int num_segments = Solve(h_keys_in, h_keys_reference, h_values_in, h_values_reference, equality_op, reduction_op, num_items);
printf("\nIterator %s cub::DeviceReduce::ReduceByKey %s reduction of %d items, %d segments (avg run length %.3f), {%s,%s} key value pairs, max_segment %d, entropy_reduction %d\n",
(BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
(Equals<ReductionOpT, Sum>::VALUE) ? "Sum" : "Max",
num_items, num_segments, float(num_items) / num_segments,
typeid(KeyT).name(), typeid(ValueT).name(),
max_segment, entropy_reduction);
fflush(stdout);
// Allocate problem device arrays
KeyT *d_keys_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_in, sizeof(KeyT) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_keys_in, h_keys_in, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
// Run Test
Test<BACKEND>(d_keys_in, h_values_in, h_keys_reference, h_values_reference, equality_op, reduction_op, num_segments, num_items);
// Cleanup
if (h_keys_in) delete[] h_keys_in;
if (h_keys_reference) delete[] h_keys_reference;
if (h_values_reference) delete[] h_values_reference;
if (d_keys_in) CubDebugExit(g_allocator.DeviceFree(d_keys_in));
}
/**
* Test different gen modes
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void Test(
int num_items,
ReductionOpT reduction_op,
int max_segment)
{
// 0 key-bit entropy reduction rounds
TestPointer<BACKEND, KeyT, ValueT>(num_items, 0, max_segment, reduction_op);
if (max_segment > 1)
{
// 2 key-bit entropy reduction rounds
TestPointer<BACKEND, KeyT, ValueT>(num_items, 2, max_segment, reduction_op);
// 7 key-bit entropy reduction rounds
TestPointer<BACKEND, KeyT, ValueT>(num_items, 7, max_segment, reduction_op);
}
}
/**
* Test different avg segment lengths modes
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void Test(
int num_items,
ReductionOpT reduction_op)
{
Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, -1);
Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, 1);
// Evaluate different max-segment lengths
for (int max_segment = 3; max_segment < CUB_MIN(num_items, (unsigned short) -1); max_segment *= 11)
{
Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, max_segment);
}
}
/**
* Test different dispatch
*/
template <
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestDispatch(
int num_items,
ReductionOpT reduction_op)
{
Test<CUB, KeyT, ValueT>(num_items, reduction_op);
#ifdef CUB_CDP
Test<CDP, KeyT, ValueT>(num_items, reduction_op);
#endif
}
/**
* Test different input sizes
*/
template <
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestSize(
int num_items,
ReductionOpT reduction_op)
{
if (num_items < 0)
{
TestDispatch<KeyT, ValueT>(1, reduction_op);
TestDispatch<KeyT, ValueT>(100, reduction_op);
TestDispatch<KeyT, ValueT>(10000, reduction_op);
TestDispatch<KeyT, ValueT>(1000000, reduction_op);
}
else
{
TestDispatch<KeyT, ValueT>(num_items, reduction_op);
}
}
template <
typename KeyT,
typename ValueT>
void TestOp(
int num_items)
{
TestSize<KeyT, ValueT>(num_items, cub::Sum());
TestSize<KeyT, ValueT>(num_items, cub::Max());
}
//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------
/**
* Main
*/
int main(int argc, char** argv)
{
int num_items = -1;
int entropy_reduction = 0;
int maxseg = 1000;
// Initialize command line
CommandLineArgs args(argc, argv);
g_verbose = args.CheckCmdLineFlag("v");
args.GetCmdLineArgument("n", num_items);
args.GetCmdLineArgument("i", g_timing_iterations);
args.GetCmdLineArgument("repeat", g_repeat);
args.GetCmdLineArgument("maxseg", maxseg);
args.GetCmdLineArgument("entropy", entropy_reduction);
// Print usage
if (args.CheckCmdLineFlag("help"))
{
printf("%s "
"[--n=<input items> "
"[--i=<timing iterations> "
"[--device=<device-id>] "
"[--maxseg=<max segment length>]"
"[--entropy=<segment length bit entropy reduction rounds>]"
"[--repeat=<repetitions of entire test suite>]"
"[--v] "
"[--cdp]"
"\n", argv[0]);
exit(0);
}
// Initialize device
CubDebugExit(args.DeviceInit());
printf("\n");
// Get ptx version
int ptx_version = 0;
CubDebugExit(PtxVersion(ptx_version));
#ifdef QUICKER_TEST
// Compile/run basic CUB test
if (num_items < 0) num_items = 32000000;
TestPointer<CUB, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
TestIterator<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
#elif defined(QUICK_TEST)
// Compile/run quick tests
if (num_items < 0) num_items = 32000000;
printf("---- RLE int ---- \n");
TestIterator<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
printf("---- RLE long long ---- \n");
TestIterator<CUB, long long, int>(num_items, entropy_reduction, maxseg, cub::Sum());
printf("---- int ---- \n");
TestPointer<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<THRUST, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
printf("---- float ---- \n");
TestPointer<CUB, int, float>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<THRUST, int, float>(num_items, entropy_reduction, maxseg, cub::Sum());
if (ptx_version > 120) // Don't check doubles on PTX120 or below because they're down-converted
{
printf("---- double ---- \n");
TestPointer<CUB, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<THRUST, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
}
#else
// Compile/run thorough tests
for (int i = 0; i <= g_repeat; ++i)
{
// Test different input types
TestOp<int, char>(num_items);
TestOp<int, short>(num_items);
TestOp<int, int>(num_items);
TestOp<int, long>(num_items);
TestOp<int, long long>(num_items);
TestOp<int, float>(num_items);
if (ptx_version > 120) // Don't check doubles on PTX120 or below because they're down-converted
TestOp<int, double>(num_items);
TestOp<int, uchar2>(num_items);
TestOp<int, uint2>(num_items);
TestOp<int, uint3>(num_items);
TestOp<int, uint4>(num_items);
TestOp<int, ulonglong4>(num_items);
TestOp<int, TestFoo>(num_items);
TestOp<int, TestBar>(num_items);
TestOp<char, int>(num_items);
TestOp<long long, int>(num_items);
TestOp<TestFoo, int>(num_items);
TestOp<TestBar, int>(num_items);
}
#endif
return 0;
}