Spaces:
Runtime error
Runtime error
/****************************************************************************** | |
* Copyright (c) 2011, Duane Merrill. All rights reserved. | |
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* * Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* * Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* * Neither the name of the NVIDIA CORPORATION nor the | |
* names of its contributors may be used to endorse or promote products | |
* derived from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* | |
******************************************************************************/ | |
/** | |
* \file | |
* cub::DeviceRunLengthEncode provides device-wide, parallel operations for computing a run-length encoding across a sequence of data items residing within device-accessible memory. | |
*/ | |
#pragma once | |
#include <stdio.h> | |
#include <iterator> | |
#include "../config.cuh" | |
#include "dispatch/dispatch_rle.cuh" | |
#include "dispatch/dispatch_reduce_by_key.cuh" | |
/// Optional outer namespace(s) | |
CUB_NS_PREFIX | |
/// CUB namespace | |
namespace cub { | |
/** | |
* \brief DeviceRunLengthEncode provides device-wide, parallel operations for demarcating "runs" of same-valued items within a sequence residing within device-accessible memory. ![](run_length_encode_logo.png) | |
* \ingroup SingleModule | |
* | |
* \par Overview | |
* A <a href="http://en.wikipedia.org/wiki/Run-length_encoding"><em>run-length encoding</em></a> | |
* computes a simple compressed representation of a sequence of input elements such that each | |
* maximal "run" of consecutive same-valued data items is encoded as a single data value along with a | |
* count of the elements in that run. | |
* | |
* \par Usage Considerations | |
* \cdp_class{DeviceRunLengthEncode} | |
* | |
* \par Performance | |
* \linear_performance{run-length encode} | |
* | |
* \par | |
* The following chart illustrates DeviceRunLengthEncode::RunLengthEncode performance across | |
* different CUDA architectures for \p int32 items. | |
* Segments have lengths uniformly sampled from [1,1000]. | |
* | |
* \image html rle_int32_len_500.png | |
* | |
* \par | |
* \plots_below | |
* | |
*/ | |
struct DeviceRunLengthEncode | |
{ | |
/** | |
* \brief Computes a run-length encoding of the sequence \p d_in. | |
* | |
* \par | |
* - For the <em>i</em><sup>th</sup> run encountered, the first key of the run and its length are written to | |
* <tt>d_unique_out[<em>i</em>]</tt> and <tt>d_counts_out[<em>i</em>]</tt>, | |
* respectively. | |
* - The total number of runs encountered is written to \p d_num_runs_out. | |
* - The <tt>==</tt> equality operator is used to determine whether values are equivalent | |
* - \devicestorage | |
* | |
* \par Performance | |
* The following charts illustrate saturated encode performance across different | |
* CUDA architectures for \p int32 and \p int64 items, respectively. Segments have | |
* lengths uniformly sampled from [1,1000]. | |
* | |
* \image html rle_int32_len_500.png | |
* \image html rle_int64_len_500.png | |
* | |
* \par | |
* The following charts are similar, but with segment lengths uniformly sampled from [1,10]: | |
* | |
* \image html rle_int32_len_5.png | |
* \image html rle_int64_len_5.png | |
* | |
* \par Snippet | |
* The code snippet below illustrates the run-length encoding of a sequence of \p int values. | |
* \par | |
* \code | |
* #include <cub/cub.cuh> // or equivalently <cub/device/device_run_length_encode.cuh> | |
* | |
* // Declare, allocate, and initialize device-accessible pointers for input and output | |
* int num_items; // e.g., 8 | |
* int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8] | |
* int *d_unique_out; // e.g., [ , , , , , , , ] | |
* int *d_counts_out; // e.g., [ , , , , , , , ] | |
* int *d_num_runs_out; // e.g., [ ] | |
* ... | |
* | |
* // Determine temporary device storage requirements | |
* void *d_temp_storage = NULL; | |
* size_t temp_storage_bytes = 0; | |
* cub::DeviceRunLengthEncode::Encode(d_temp_storage, temp_storage_bytes, d_in, d_unique_out, d_counts_out, d_num_runs_out, num_items); | |
* | |
* // Allocate temporary storage | |
* cudaMalloc(&d_temp_storage, temp_storage_bytes); | |
* | |
* // Run encoding | |
* cub::DeviceRunLengthEncode::Encode(d_temp_storage, temp_storage_bytes, d_in, d_unique_out, d_counts_out, d_num_runs_out, num_items); | |
* | |
* // d_unique_out <-- [0, 2, 9, 5, 8] | |
* // d_counts_out <-- [1, 2, 1, 3, 1] | |
* // d_num_runs_out <-- [5] | |
* | |
* \endcode | |
* | |
* \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator | |
* \tparam UniqueOutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing unique output items \iterator | |
* \tparam LengthsOutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing output counts \iterator | |
* \tparam NumRunsOutputIteratorT <b>[inferred]</b> Output iterator type for recording the number of runs encountered \iterator | |
*/ | |
template < | |
typename InputIteratorT, | |
typename UniqueOutputIteratorT, | |
typename LengthsOutputIteratorT, | |
typename NumRunsOutputIteratorT> | |
CUB_RUNTIME_FUNCTION __forceinline__ | |
static cudaError_t Encode( | |
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. | |
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation | |
InputIteratorT d_in, ///< [in] Pointer to the input sequence of keys | |
UniqueOutputIteratorT d_unique_out, ///< [out] Pointer to the output sequence of unique keys (one key per run) | |
LengthsOutputIteratorT d_counts_out, ///< [out] Pointer to the output sequence of run-lengths (one count per run) | |
NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs | |
int num_items, ///< [in] Total number of associated key+value pairs (i.e., the length of \p d_in_keys and \p d_in_values) | |
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. | |
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. | |
{ | |
typedef int OffsetT; // Signed integer type for global offsets | |
typedef NullType* FlagIterator; // FlagT iterator type (not used) | |
typedef NullType SelectOp; // Selection op (not used) | |
typedef Equality EqualityOp; // Default == operator | |
typedef cub::Sum ReductionOp; // Value reduction operator | |
// The lengths output value type | |
typedef typename If<(Equals<typename std::iterator_traits<LengthsOutputIteratorT>::value_type, void>::VALUE), // LengthT = (if output iterator's value type is void) ? | |
OffsetT, // ... then the OffsetT type, | |
typename std::iterator_traits<LengthsOutputIteratorT>::value_type>::Type LengthT; // ... else the output iterator's value type | |
// Generator type for providing 1s values for run-length reduction | |
typedef ConstantInputIterator<LengthT, OffsetT> LengthsInputIteratorT; | |
return DispatchReduceByKey<InputIteratorT, UniqueOutputIteratorT, LengthsInputIteratorT, LengthsOutputIteratorT, NumRunsOutputIteratorT, EqualityOp, ReductionOp, OffsetT>::Dispatch( | |
d_temp_storage, | |
temp_storage_bytes, | |
d_in, | |
d_unique_out, | |
LengthsInputIteratorT((LengthT) 1), | |
d_counts_out, | |
d_num_runs_out, | |
EqualityOp(), | |
ReductionOp(), | |
num_items, | |
stream, | |
debug_synchronous); | |
} | |
/** | |
* \brief Enumerates the starting offsets and lengths of all non-trivial runs (of length > 1) of same-valued keys in the sequence \p d_in. | |
* | |
* \par | |
* - For the <em>i</em><sup>th</sup> non-trivial run, the run's starting offset | |
* and its length are written to <tt>d_offsets_out[<em>i</em>]</tt> and | |
* <tt>d_lengths_out[<em>i</em>]</tt>, respectively. | |
* - The total number of runs encountered is written to \p d_num_runs_out. | |
* - The <tt>==</tt> equality operator is used to determine whether values are equivalent | |
* - \devicestorage | |
* | |
* \par Performance | |
* | |
* \par Snippet | |
* The code snippet below illustrates the identification of non-trivial runs within a sequence of \p int values. | |
* \par | |
* \code | |
* #include <cub/cub.cuh> // or equivalently <cub/device/device_run_length_encode.cuh> | |
* | |
* // Declare, allocate, and initialize device-accessible pointers for input and output | |
* int num_items; // e.g., 8 | |
* int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8] | |
* int *d_offsets_out; // e.g., [ , , , , , , , ] | |
* int *d_lengths_out; // e.g., [ , , , , , , , ] | |
* int *d_num_runs_out; // e.g., [ ] | |
* ... | |
* | |
* // Determine temporary device storage requirements | |
* void *d_temp_storage = NULL; | |
* size_t temp_storage_bytes = 0; | |
* cub::DeviceRunLengthEncode::NonTrivialRuns(d_temp_storage, temp_storage_bytes, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, num_items); | |
* | |
* // Allocate temporary storage | |
* cudaMalloc(&d_temp_storage, temp_storage_bytes); | |
* | |
* // Run encoding | |
* cub::DeviceRunLengthEncode::NonTrivialRuns(d_temp_storage, temp_storage_bytes, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, num_items); | |
* | |
* // d_offsets_out <-- [1, 4] | |
* // d_lengths_out <-- [2, 3] | |
* // d_num_runs_out <-- [2] | |
* | |
* \endcode | |
* | |
* \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator | |
* \tparam OffsetsOutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing run-offset values \iterator | |
* \tparam LengthsOutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing run-length values \iterator | |
* \tparam NumRunsOutputIteratorT <b>[inferred]</b> Output iterator type for recording the number of runs encountered \iterator | |
*/ | |
template < | |
typename InputIteratorT, | |
typename OffsetsOutputIteratorT, | |
typename LengthsOutputIteratorT, | |
typename NumRunsOutputIteratorT> | |
CUB_RUNTIME_FUNCTION __forceinline__ | |
static cudaError_t NonTrivialRuns( | |
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. | |
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation | |
InputIteratorT d_in, ///< [in] Pointer to input sequence of data items | |
OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run-offsets (one offset per non-trivial run) | |
LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run-lengths (one count per non-trivial run) | |
NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs (i.e., length of \p d_offsets_out) | |
int num_items, ///< [in] Total number of associated key+value pairs (i.e., the length of \p d_in_keys and \p d_in_values) | |
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. | |
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. | |
{ | |
typedef int OffsetT; // Signed integer type for global offsets | |
typedef Equality EqualityOp; // Default == operator | |
return DeviceRleDispatch<InputIteratorT, OffsetsOutputIteratorT, LengthsOutputIteratorT, NumRunsOutputIteratorT, EqualityOp, OffsetT>::Dispatch( | |
d_temp_storage, | |
temp_storage_bytes, | |
d_in, | |
d_offsets_out, | |
d_lengths_out, | |
d_num_runs_out, | |
EqualityOp(), | |
num_items, | |
stream, | |
debug_synchronous); | |
} | |
}; | |
} // CUB namespace | |
CUB_NS_POSTFIX // Optional outer namespace(s) | |