/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * The cub::WarpReduce class provides [collective](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp. */ #pragma once #include "../config.cuh" #include "specializations/warp_reduce_shfl.cuh" #include "specializations/warp_reduce_smem.cuh" #include "../thread/thread_operators.cuh" #include "../util_type.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \addtogroup WarpModule * @{ */ /** * \brief The WarpReduce class provides [collective](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread warp. ![](warp_reduce_logo.png) * * \tparam T The reduction input/output element type * \tparam LOGICAL_WARP_THREADS [optional] The number of threads per "logical" warp (may be less than the number of hardware warp threads). Default is the warp size of the targeted CUDA compute-capability (e.g., 32 threads for SM20). * \tparam PTX_ARCH [optional] \ptxversion * * \par Overview * - A reduction (or fold) * uses a binary combining operator to compute a single aggregate from a list of input elements. * - Supports "logical" warps smaller than the physical warp size (e.g., logical warps of 8 threads) * - The number of entrant threads must be an multiple of \p LOGICAL_WARP_THREADS * * \par Performance Considerations * - Uses special instructions when applicable (e.g., warp \p SHFL instructions) * - Uses synchronization-free communication between warp lanes when applicable * - Incurs zero bank conflicts for most types * - Computation is slightly more efficient (i.e., having lower instruction overhead) for: * - Summation (vs. generic reduction) * - The architecture's warp size is a whole multiple of \p LOGICAL_WARP_THREADS * * \par Simple Examples * \warpcollective{WarpReduce} * \par * The code snippet below illustrates four concurrent warp sum reductions within a block of * 128 threads (one per each of the 32-thread warps). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for 4 warps * __shared__ typename WarpReduce::TempStorage temp_storage[4]; * * // Obtain one input item per thread * int thread_data = ... * * // Return the warp-wide sums to each lane0 (threads 0, 32, 64, and 96) * int warp_id = threadIdx.x / 32; * int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data); * * \endcode * \par * Suppose the set of input \p thread_data across the block of threads is {0, 1, 2, 3, ..., 127}. * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520, * \p 2544, and \p 3568, respectively (and is undefined in other threads). * * \par * The code snippet below illustrates a single warp sum reduction within a block of * 128 threads. * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * ... * * // Only the first warp performs a reduction * if (threadIdx.x < 32) * { * // Obtain one input item per thread * int thread_data = ... * * // Return the warp-wide sum to lane0 * int aggregate = WarpReduce(temp_storage).Sum(thread_data); * * \endcode * \par * Suppose the set of input \p thread_data across the warp of threads is {0, 1, 2, 3, ..., 31}. * The corresponding output \p aggregate in thread0 will be \p 496 (and is undefined in other threads). * */ template < typename T, int LOGICAL_WARP_THREADS = CUB_PTX_WARP_THREADS, int PTX_ARCH = CUB_PTX_ARCH> class WarpReduce { private: /****************************************************************************** * Constants and type definitions ******************************************************************************/ enum { /// Whether the logical warp size and the PTX warp size coincide IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(PTX_ARCH)), /// Whether the logical warp size is a power-of-two IS_POW_OF_TWO = PowerOfTwo::VALUE, }; public: #ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document /// Internal specialization. Use SHFL-based reduction if (architecture is >= SM30) and (LOGICAL_WARP_THREADS is a power-of-two) typedef typename If<(PTX_ARCH >= 300) && (IS_POW_OF_TWO), WarpReduceShfl, WarpReduceSmem >::Type InternalWarpReduce; #endif // DOXYGEN_SHOULD_SKIP_THIS private: /// Shared memory storage layout type for WarpReduce typedef typename InternalWarpReduce::TempStorage _TempStorage; /****************************************************************************** * Thread fields ******************************************************************************/ /// Shared storage reference _TempStorage &temp_storage; /****************************************************************************** * Utility methods ******************************************************************************/ public: /// \smemstorage{WarpReduce} struct TempStorage : Uninitialized<_TempStorage> {}; /******************************************************************//** * \name Collective constructors *********************************************************************/ //@{ /** * \brief Collective constructor using the specified memory allocation as temporary storage. Logical warp and lane identifiers are constructed from threadIdx.x. */ __device__ __forceinline__ WarpReduce( TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage : temp_storage(temp_storage.Alias()) {} //@} end member group /******************************************************************//** * \name Summation reductions *********************************************************************/ //@{ /** * \brief Computes a warp-wide sum in the calling warp. The output is valid in warp lane0. * * \smemreuse * * \par Snippet * The code snippet below illustrates four concurrent warp sum reductions within a block of * 128 threads (one per each of the 32-thread warps). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for 4 warps * __shared__ typename WarpReduce::TempStorage temp_storage[4]; * * // Obtain one input item per thread * int thread_data = ... * * // Return the warp-wide sums to each lane0 * int warp_id = threadIdx.x / 32; * int aggregate = WarpReduce(temp_storage[warp_id]).Sum(thread_data); * * \endcode * \par * Suppose the set of input \p thread_data across the block of threads is {0, 1, 2, 3, ..., 127}. * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 496, \p 1520, * \p 2544, and \p 3568, respectively (and is undefined in other threads). * */ __device__ __forceinline__ T Sum( T input) ///< [in] Calling thread's input { return InternalWarpReduce(temp_storage).template Reduce(input, LOGICAL_WARP_THREADS, cub::Sum()); } /** * \brief Computes a partially-full warp-wide sum in the calling warp. The output is valid in warp lane0. * * All threads across the calling warp must agree on the same value for \p valid_items. Otherwise the result is undefined. * * \smemreuse * * \par Snippet * The code snippet below illustrates a sum reduction within a single, partially-full * block of 32 threads (one warp). * \par * \code * #include * * __global__ void ExampleKernel(int *d_data, int valid_items) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * * // Obtain one input item per thread if in range * int thread_data; * if (threadIdx.x < valid_items) * thread_data = d_data[threadIdx.x]; * * // Return the warp-wide sums to each lane0 * int aggregate = WarpReduce(temp_storage).Sum( * thread_data, valid_items); * * \endcode * \par * Suppose the input \p d_data is {0, 1, 2, 3, 4, ... and \p valid_items * is \p 4. The corresponding output \p aggregate in thread0 is \p 6 (and is * undefined in other threads). * */ __device__ __forceinline__ T Sum( T input, ///< [in] Calling thread's input int valid_items) ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS) { // Determine if we don't need bounds checking return InternalWarpReduce(temp_storage).template Reduce(input, valid_items, cub::Sum()); } /** * \brief Computes a segmented sum in the calling warp where segments are defined by head-flags. The sum of each segment is returned to the first lane in that segment (which always includes lane0). * * \smemreuse * * \par Snippet * The code snippet below illustrates a head-segmented warp sum * reduction within a block of 32 threads (one warp). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * * // Obtain one input item and flag per thread * int thread_data = ... * int head_flag = ... * * // Return the warp-wide sums to each lane0 * int aggregate = WarpReduce(temp_storage).HeadSegmentedSum( * thread_data, head_flag); * * \endcode * \par * Suppose the set of input \p thread_data and \p head_flag across the block of threads * is {0, 1, 2, 3, ..., 31 and is {1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0, * respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be * \p 6, \p 22, \p 38, etc. (and is undefined in other threads). * * \tparam ReductionOp [inferred] Binary reduction operator type having member T operator()(const T &a, const T &b) * */ template < typename FlagT> __device__ __forceinline__ T HeadSegmentedSum( T input, ///< [in] Calling thread's input FlagT head_flag) ///< [in] Head flag denoting whether or not \p input is the start of a new segment { return HeadSegmentedReduce(input, head_flag, cub::Sum()); } /** * \brief Computes a segmented sum in the calling warp where segments are defined by tail-flags. The sum of each segment is returned to the first lane in that segment (which always includes lane0). * * \smemreuse * * \par Snippet * The code snippet below illustrates a tail-segmented warp sum * reduction within a block of 32 threads (one warp). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * * // Obtain one input item and flag per thread * int thread_data = ... * int tail_flag = ... * * // Return the warp-wide sums to each lane0 * int aggregate = WarpReduce(temp_storage).TailSegmentedSum( * thread_data, tail_flag); * * \endcode * \par * Suppose the set of input \p thread_data and \p tail_flag across the block of threads * is {0, 1, 2, 3, ..., 31 and is {0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1, * respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be * \p 6, \p 22, \p 38, etc. (and is undefined in other threads). * * \tparam ReductionOp [inferred] Binary reduction operator type having member T operator()(const T &a, const T &b) */ template < typename FlagT> __device__ __forceinline__ T TailSegmentedSum( T input, ///< [in] Calling thread's input FlagT tail_flag) ///< [in] Head flag denoting whether or not \p input is the start of a new segment { return TailSegmentedReduce(input, tail_flag, cub::Sum()); } //@} end member group /******************************************************************//** * \name Generic reductions *********************************************************************/ //@{ /** * \brief Computes a warp-wide reduction in the calling warp using the specified binary reduction functor. The output is valid in warp lane0. * * Supports non-commutative reduction operators * * \smemreuse * * \par Snippet * The code snippet below illustrates four concurrent warp max reductions within a block of * 128 threads (one per each of the 32-thread warps). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for 4 warps * __shared__ typename WarpReduce::TempStorage temp_storage[4]; * * // Obtain one input item per thread * int thread_data = ... * * // Return the warp-wide reductions to each lane0 * int warp_id = threadIdx.x / 32; * int aggregate = WarpReduce(temp_storage[warp_id]).Reduce( * thread_data, cub::Max()); * * \endcode * \par * Suppose the set of input \p thread_data across the block of threads is {0, 1, 2, 3, ..., 127}. * The corresponding output \p aggregate in threads 0, 32, 64, and 96 will \p 31, \p 63, * \p 95, and \p 127, respectively (and is undefined in other threads). * * \tparam ReductionOp [inferred] Binary reduction operator type having member T operator()(const T &a, const T &b) */ template __device__ __forceinline__ T Reduce( T input, ///< [in] Calling thread's input ReductionOp reduction_op) ///< [in] Binary reduction operator { return InternalWarpReduce(temp_storage).template Reduce(input, LOGICAL_WARP_THREADS, reduction_op); } /** * \brief Computes a partially-full warp-wide reduction in the calling warp using the specified binary reduction functor. The output is valid in warp lane0. * * All threads across the calling warp must agree on the same value for \p valid_items. Otherwise the result is undefined. * * Supports non-commutative reduction operators * * \smemreuse * * \par Snippet * The code snippet below illustrates a max reduction within a single, partially-full * block of 32 threads (one warp). * \par * \code * #include * * __global__ void ExampleKernel(int *d_data, int valid_items) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * * // Obtain one input item per thread if in range * int thread_data; * if (threadIdx.x < valid_items) * thread_data = d_data[threadIdx.x]; * * // Return the warp-wide reductions to each lane0 * int aggregate = WarpReduce(temp_storage).Reduce( * thread_data, cub::Max(), valid_items); * * \endcode * \par * Suppose the input \p d_data is {0, 1, 2, 3, 4, ... and \p valid_items * is \p 4. The corresponding output \p aggregate in thread0 is \p 3 (and is * undefined in other threads). * * \tparam ReductionOp [inferred] Binary reduction operator type having member T operator()(const T &a, const T &b) */ template __device__ __forceinline__ T Reduce( T input, ///< [in] Calling thread's input ReductionOp reduction_op, ///< [in] Binary reduction operator int valid_items) ///< [in] Total number of valid items in the calling thread's logical warp (may be less than \p LOGICAL_WARP_THREADS) { return InternalWarpReduce(temp_storage).template Reduce(input, valid_items, reduction_op); } /** * \brief Computes a segmented reduction in the calling warp where segments are defined by head-flags. The reduction of each segment is returned to the first lane in that segment (which always includes lane0). * * Supports non-commutative reduction operators * * \smemreuse * * \par Snippet * The code snippet below illustrates a head-segmented warp max * reduction within a block of 32 threads (one warp). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * * // Obtain one input item and flag per thread * int thread_data = ... * int head_flag = ... * * // Return the warp-wide reductions to each lane0 * int aggregate = WarpReduce(temp_storage).HeadSegmentedReduce( * thread_data, head_flag, cub::Max()); * * \endcode * \par * Suppose the set of input \p thread_data and \p head_flag across the block of threads * is {0, 1, 2, 3, ..., 31 and is {1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 0, 0, * respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be * \p 3, \p 7, \p 11, etc. (and is undefined in other threads). * * \tparam ReductionOp [inferred] Binary reduction operator type having member T operator()(const T &a, const T &b) */ template < typename ReductionOp, typename FlagT> __device__ __forceinline__ T HeadSegmentedReduce( T input, ///< [in] Calling thread's input FlagT head_flag, ///< [in] Head flag denoting whether or not \p input is the start of a new segment ReductionOp reduction_op) ///< [in] Reduction operator { return InternalWarpReduce(temp_storage).template SegmentedReduce(input, head_flag, reduction_op); } /** * \brief Computes a segmented reduction in the calling warp where segments are defined by tail-flags. The reduction of each segment is returned to the first lane in that segment (which always includes lane0). * * Supports non-commutative reduction operators * * \smemreuse * * \par Snippet * The code snippet below illustrates a tail-segmented warp max * reduction within a block of 32 threads (one warp). * \par * \code * #include * * __global__ void ExampleKernel(...) * { * // Specialize WarpReduce for type int * typedef cub::WarpReduce WarpReduce; * * // Allocate WarpReduce shared memory for one warp * __shared__ typename WarpReduce::TempStorage temp_storage; * * // Obtain one input item and flag per thread * int thread_data = ... * int tail_flag = ... * * // Return the warp-wide reductions to each lane0 * int aggregate = WarpReduce(temp_storage).TailSegmentedReduce( * thread_data, tail_flag, cub::Max()); * * \endcode * \par * Suppose the set of input \p thread_data and \p tail_flag across the block of threads * is {0, 1, 2, 3, ..., 31 and is {0, 0, 0, 1, 0, 0, 0, 1, ..., 0, 0, 0, 1, * respectively. The corresponding output \p aggregate in threads 0, 4, 8, etc. will be * \p 3, \p 7, \p 11, etc. (and is undefined in other threads). * * \tparam ReductionOp [inferred] Binary reduction operator type having member T operator()(const T &a, const T &b) */ template < typename ReductionOp, typename FlagT> __device__ __forceinline__ T TailSegmentedReduce( T input, ///< [in] Calling thread's input FlagT tail_flag, ///< [in] Tail flag denoting whether or not \p input is the end of the current segment ReductionOp reduction_op) ///< [in] Reduction operator { return InternalWarpReduce(temp_storage).template SegmentedReduce(input, tail_flag, reduction_op); } //@} end member group }; /** @} */ // end group WarpModule } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s)