mabelang commited on
Commit
02c5bdc
1 Parent(s): b06a7c0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+ model_path = "mabel_transferlearning.keras"
6
+ model = tf.keras.models.load_model(model_path)
7
+
8
+ # Define the core prediction function
9
+ def predict_pokemons(image):
10
+ # Preprocess image
11
+ print(type(image))
12
+ image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
13
+ image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
14
+ image = np.array(image)
15
+ image = np.expand_dims(image, axis=0) # same as image[None, ...]
16
+
17
+ # Predict
18
+ prediction = model.predict(image)
19
+
20
+ # Apply sigmoid to get probabilities
21
+ prediction_prob = tf.sigmoid(prediction).numpy()
22
+
23
+ p_Abra = round(prediction_prob[0][0], 2)
24
+ p_Pikachu = round(prediction_prob[0][1], 2)
25
+ p_Beedrill = round(prediction_prob[0][2], 2)
26
+
27
+ return{'Abra': p_Abra, 'Pikachu': p_Pikachu, 'Beedrill': p_Beedrill}
28
+
29
+ # Create the Gradio interface
30
+ input_image = gr.Image()
31
+ iface = gr.Interface(
32
+ fn=predict_pokemons,
33
+ inputs=input_image,
34
+ outputs=gr.Label(),
35
+ examples=["Abra1.png", "Abra2.png", "Abra3.jpg", "Beedrill1.jpg", "Beedrill2.jpg", "Beedrill3.png", "Pikachu1.png", "Pikachu2.jpg", "Pikachu3.png"],
36
+ description="Pokemon Classifier")
37
+ iface.launch()