import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "mabel_transferlearning.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_pokemons(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] # Predict prediction = model.predict(image) # Apply sigmoid to get probabilities prediction_prob = tf.sigmoid(prediction).numpy() p_Abra = round(prediction_prob[0][0], 2) p_Pikachu = round(prediction_prob[0][1], 2) p_Beedrill = round(prediction_prob[0][2], 2) return{'Abra': p_Abra, 'Pikachu': p_Pikachu, 'Beedrill': p_Beedrill} # Create the Gradio interface input_image = gr.Image() iface = gr.Interface( fn=predict_pokemons, inputs=input_image, outputs=gr.Label(), examples=["Abra1.png", "Abra2.png", "Abra3.jpg", "Beedrill1.jpg", "Beedrill2.jpg", "Beedrill3.png", "Pikachu1.png", "Pikachu2.jpg", "Pikachu3.png"], description="Pokemon Classifier") iface.launch()