Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
# Lazy loading the model to meet huggingface stateless GPU requirements | |
# Defining a custom stopping criteria class for the model's text generation. | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [50256, 50295] # IDs of tokens where the generation should stop. | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
return True | |
return False | |
# Function to generate model predictions. | |
def predict(message, history): | |
torch.set_default_device("cuda") | |
# Loading the tokenizer and model from Hugging Face's model hub. | |
tokenizer = AutoTokenizer.from_pretrained( | |
"macadeliccc/laser-dolphin-mixtral-2x7b-dpo", | |
trust_remote_code=True | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"macadeliccc/laser-dolphin-mixtral-2x7b-dpo", | |
torch_dtype="auto", | |
load_in_4bit=True, | |
trust_remote_code=True | |
) | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
# Formatting the input for the model. | |
system_prompt = "<|im_start|>system\nYou are Dolphin, a helpful AI assistant.<|im_end|>" | |
messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format]) | |
input_ids = tokenizer([messages], return_tensors="pt").to('cuda') | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids, | |
streamer=streamer, | |
max_new_tokens=256, | |
do_sample=True, | |
top_p=0.95, | |
top_k=50, | |
temperature=0.7, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() # Starting the generation in a separate thread. | |
partial_message = "" | |
for new_token in streamer: | |
partial_message += new_token | |
if '<|im_end|>' in partial_message: # Breaking the loop if the stop token is generated. | |
break | |
yield partial_message | |
# Setting up the Gradio chat interface. | |
gr.ChatInterface(predict, | |
description=""" | |
<center><img src="https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo/resolve/main/dolphin_moe.png" width="33%"></center>\n\n | |
Chat with [macadeliccc/laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo), the first Mixture of Experts made of lasered 7b models. | |
This model (24.2B param) scores very well on many evaluations. More information is available on the model card. Output is considered experimental.\n\n | |
❤️ If you like this work, please follow me on [Hugging Face](https://huggingface.co/macadeliccc) and [LinkedIn](https://www.linkedin.com/in/tim-dolan-python-dev/). | |
""", | |
examples=[ | |
'Can you solve the equation 2x + 3 = 11 for x?', | |
'How does Fermats last theorem impact number theory?', | |
'What is a vector in the scope of computer science rather than physics?', | |
'Use a list comprehension to create a list of squares for numbers from 1 to 10.', | |
'Recommend some popular science fiction books.', | |
'Can you write a short story about a time-traveling detective?' | |
], | |
theme=gr.themes.Soft(primary_hue="purple"), | |
).launch() |