import numpy as np import math import nltk import matplotlib.pyplot as plt import re import gradio as gr from collections import Counter, defaultdict from sklearn.model_selection import KFold from sklearn import metrics nltk.download('brown') nltk.download('universal_tagset') class HMM: def __init__(self): self.tagged_sentences = nltk.corpus.brown.tagged_sents(tagset='universal') self.tagset = ['.', 'ADJ', 'ADP', 'ADV', 'CONJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PRT', 'VERB', 'X'] self.start_token = '^' self.end_token = '$' self.tagged_sentences = [[(self.start_token, self.start_token)] + sentence + [(self.end_token, self.end_token)] for sentence in self.tagged_sentences] self.tagged_sentences = [[(word.lower(),tag) for word, tag in sentence] for sentence in self.tagged_sentences] def train(self): tagged_sent = np.array(self.tagged_sentences,dtype='object') y_pred = [] y_true = [] train = (int)(0.8*len(tagged_sent)) train_sentences = tagged_sent[:train] test_sentences = tagged_sent[train:] tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences) for sentence in test_sentences: untaggedWords = [word for word,tag in sentence] prediction = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping) for i in range(1,len(prediction)-1): y_pred.append(prediction[i]) y_true.append(sentence[i][1]) f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0) f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0) f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0) precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0) recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0) print(f"Precision = {precision:.2f}, Recall = {recall:.2f}, f05-Score = {f05_Score:.2f}, f1-Score = {f1_Score:.2f}, f2-Score = {f2_Score:.2f}") return tagsCount,wordTagMapping,tagTagMapping def viterbi(self,untaggedWords,tagsCount,wordTagMapping,tagTagMapping): sent_len = len(untaggedWords) # taglist = [] prev, curr, path = defaultdict(Counter), defaultdict(Counter), defaultdict(Counter) prev = {tag: 0.0 for tag in tagsCount} prev[self.start_token] = 1.0 path[0][self.start_token] = 1.0 for i in range(1,sent_len-1): word = untaggedWords[i] # max_prev_tag = max(prev, key=prev.get) # taglist.append(max_prev_tag) for tag in tagsCount: curr[tag] = float('-inf') # lprob = prev[max_prev_tag] + math.log(lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(transition_probability(max_prev_tag,tag,tagsCount,tagTagMapping)) # if lprob>curr[tag]: # curr[tag] = lprob # path[i][tag] = max_prev_tag for prev_tag in tagsCount: lprob = prev[prev_tag] + math.log(self.lexical_probability(word,tag,tagsCount,wordTagMapping)) + math.log(self.transition_probability(prev_tag,tag,tagsCount,tagTagMapping)) if lprob>curr[tag]: curr[tag] = lprob path[i][tag] = prev_tag for tag in tagsCount: prev[tag] = curr[tag] # max_prev_tag = max(prev, key=prev.get) # taglist.append(max_prev_tag) # taglist.append('$') taglist = ['$' for i in range(sent_len)] for tag in tagsCount: if curr[tag] > curr[taglist[sent_len-2]]: taglist[sent_len-2] = tag for i in range(sent_len-3,0,-1): taglist[i] = path[i+1][taglist[i+1]] taglist[0] = self.start_token return taglist def mapping(self, sentences): word_tag_pairs = [(word, tag) for sentence in sentences for word, tag in sentence] tagsCount = Counter(tag for _,tag in word_tag_pairs) wordTagMapping = defaultdict(Counter) for word, tag in word_tag_pairs: wordTagMapping[word][tag]+=1 tagTagMapping = defaultdict(Counter) for sentence in sentences: for i in range(len(sentence)-1): tagTagMapping[sentence[i][1]][sentence[i+1][1]]+=1 return tagsCount,wordTagMapping,tagTagMapping def transition_probability(self,curr,next,tagsCount,tagTagMapping): currToNextCount = tagTagMapping[curr][next] currCount = tagsCount[curr] probability = (currToNextCount) / (currCount) return 10**-9 if probability == 0 else probability def lexical_probability(self,word,tag,tagsCount,wordTagMapping): wordTagCount = wordTagMapping[word][tag] tagCount = tagsCount[tag] probability = (wordTagCount+1)/(tagCount+len(wordTagMapping)) # Adding Laplace Smoothing return probability def cross_validation(self, tagged_sentences): kfold = KFold(n_splits=5, shuffle=True, random_state=1) tagged_sent = np.array(tagged_sentences,dtype='object') y_pred_list = [] y_true_list = [] for fold, (train, test) in enumerate(kfold.split(tagged_sent)): train_sentences = tagged_sent[train] test_sentences = tagged_sent[test] tagsCount,wordTagMapping,tagTagMapping = self.mapping(train_sentences) y_pred = [] y_true = [] for sentence in test_sentences: untaggedWords = [word for word,_ in sentence] pred_taglist = self.viterbi(untaggedWords,tagsCount,wordTagMapping,tagTagMapping) for i in range(1,len(pred_taglist)-1): y_pred.append(pred_taglist[i]) y_true.append(sentence[i][1]) y_pred_list.append(np.array(y_pred)) y_true_list.append(np.array(y_true)) accuracy = metrics.accuracy_score(y_true_list[-1],y_pred_list[-1],normalize=True) print(f'Fold {fold + 1} Accuracy: {accuracy}') f05_Score, f1_Score, f2_Score, precision, recall = 0, 0, 0, 0, 0 for i in range(5): precision += metrics.precision_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0) recall += metrics.recall_score(y_true_list[i],y_pred_list[i],average='weighted',zero_division=0) f05_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=0.5,average='weighted',zero_division=0) f1_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=1,average='weighted',zero_division=0) f2_Score += metrics.fbeta_score(y_true_list[i],y_pred_list[i],beta=2,average='weighted',zero_division=0) precision = precision/5.0 recall = recall/5.0 f05_Score = f05_Score/5.0 f1_Score = f1_Score/5.0 f2_Score = f2_Score/5.0 print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}") self.per_pos_report(y_true_list,y_pred_list) self.confusion_matrix(y_true_list,y_pred_list) def confusion_matrix(self,y_true_list,y_pred_list): total = 0.0 for y_true,y_pred in zip(y_true_list,y_pred_list): cm = metrics.confusion_matrix(y_true,y_pred,labels=self.tagset) total += cm matrix = total/len(y_true_list) normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True) plt.subplots(figsize=(12,10)) plt.xticks(np.arange(len(self.tagset)), self.tagset) plt.yticks(np.arange(len(self.tagset)), self.tagset) for i in range(normalized_matrix.shape[0]): for j in range(normalized_matrix.shape[1]): plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center") plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.Greens) plt.colorbar() plt.savefig('Confusion_Matrix.png') def per_pos_report(self,y_true_list,y_pred_list): report, support = 0, 0 for y_true,y_pred in zip(y_true_list,y_pred_list): cr = metrics.classification_report(y_true,y_pred,labels=self.tagset,zero_division=0) cr = cr.replace('macro avg', 'MacroAvg').replace('micro avg', 'MicroAvg').replace('weighted avg', 'WeightedAvg') rows = cr.split('\n') tags , reportValues , supportValues = [], [], [] for row in rows[1:]: row = row.strip().split() if len(row) < 2: continue tagScores = [float(j) for j in row[1: len(row) - 1]] supportValues.append(int(row[-1])) tags.append(row[0]) reportValues.append(tagScores) report += np.array(reportValues) support += np.array(supportValues) report = report/5.0 support = support/5.0 xlabels = ['Precision', 'Recall', 'F1 Score'] ylabels = ['{0}[{1}]'.format(tags[i], sup) for i, sup in enumerate(support)] _, ax = plt.subplots(figsize=(18,10)) ax.xaxis.set_tick_params() ax.yaxis.set_tick_params() plt.imshow(report, aspect='auto',cmap=plt.cm.RdYlGn) plt.xticks(np.arange(3), xlabels) plt.yticks(np.arange(len(tags)), ylabels) plt.colorbar() for i in range(report.shape[0]): for j in range(report.shape[1]): plt.text(j, i, format(report[i, j], '.2f'), horizontalalignment="center", verticalalignment="center") plt.savefig('Per_POS_Accuracy.png') def doTagging(self,input_sentence,prevTagsCount,prevWordTagMapping,prevTagTagMapping): input_sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input_sentence.strip())) untaggedWords = input_sentence.lower().split() untaggedWords = ['^'] + untaggedWords + ['$'] tags = self.viterbi(untaggedWords, prevTagsCount, prevWordTagMapping, prevTagTagMapping) output_sentence = ''.join(f'{untaggedWords[i]}[{tags[i]}] ' for i in range(1,len(untaggedWords)-1)) return output_sentence hmm = HMM() hmm.cross_validation(hmm.tagged_sentences) tagsCount,wordTagMapping,tagTagMapping = hmm.train() # test_sent = "the united kingdom and the usa are on two sides of the atlantic" def tagging(input_sentence): return hmm.doTagging(input_sentence, tagsCount, wordTagMapping, tagTagMapping) interface = gr.Interface(fn = tagging, inputs = gr.Textbox( label="Input Sentence", placeholder="Enter your sentence here...", ), outputs = gr.Textbox( label="Tagged Output", placeholder="Tagged sentence appears here...", ), title = "Hidden Markov Model POS Tagger", description = "CS626 Assignment 1A (Autumn 2024)", theme=gr.themes.Soft()) interface.launch(inline = False, share = True)