majedk01's picture
Update app.py
bf2b450 verified
## app.py:
import torch
import gradio as gr
from diffusers import StableDiffusionPipeline
import requests
from io import BytesIO
import os
from PIL import Image
def translate_text(text, target_language='en'):
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-ar-en"
headers = {"Authorization": f"Bearer {os.getenv('API_TOKEN')}"}
response = requests.post(API_URL, headers=headers, json=text)
if response.status_code == 200:
return response.json()[0]['translation_text']
else:
print("Failed to translate text:", response.text)
return text # Return the original text if translation fails
# Function to post data to an API and return response
def query(payload, API_URL, headers):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
# Function to generate images based on prompts using the Hugging Face API
def generate_image(prompt, model_choice, translate=False):
if translate:
prompt = translate_text(prompt, target_language='en') # Assuming you want to translate to English
model_urls = {
"Stable Diffusion v1.5": "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5",
"dalle-3-xl-v2": "https://api-inference.huggingface.co/models/ehristoforu/dalle-3-xl-v2",
"midjourney-v6": "https://api-inference.huggingface.co/models/Kvikontent/midjourney-v6",
"openjourney-v4": "https://api-inference.huggingface.co/models/prompthero/openjourney-v4",
"LCM_Dreamshaper_v7": "https://api-inference.huggingface.co/models/SimianLuo/LCM_Dreamshaper_v7",
}
API_URL = model_urls[model_choice]
headers = {"Authorization": f"Bearer {os.getenv('API_TOKEN')}"}
payload = {"inputs": prompt}
data = query(payload, API_URL, headers)
try:
# Load the image from byte data
image = Image.open(BytesIO(data))
# Resize the image
image = image.resize((400, 400))
# Convert the image object back to bytes for Gradio output
buf = BytesIO()
image.save(buf, format='PNG')
buf.seek(0)
return image
except Exception as e:
print("Error processing the image:", e)
return None # Return None or an appropriate error message/image
# Set up environment variable correctly
API_TOKEN = os.getenv("API_TOKEN")
# Styling with custom CSS
css = """
body {background-color: #f0f2f5;}
.gradio-app {background-color: #ffffff; border-radius: 12px; box-shadow: 0 0 12px rgba(0,0,0,0.1);}
button {color: white; background-color: #106BA3; border: none; border-radius: 5px;}
"""
# Define interface
title = "نموذج توليد الصور"
description = "اكتب وصف للصورة التي تود من النظام التوليدي انشاءها"
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.components.Textbox(lines=2, placeholder="Enter the description of the image here..."),
gr.components.Dropdown(choices=["Stable Diffusion v1.5","dalle-3-xl-v2","midjourney-v6","openjourney-v4","LCM_Dreamshaper_v7"], label="Choose Model", value='Stable Diffusion v1.5'),
gr.components.Checkbox(label="Translate The Text Before Generating Image", value=False)
],
outputs=gr.components.Image(),
title=title,
description=description,
theme="default",
css=css
)
# Launch the interface
iface.launch()