Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,84 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
if torch.cuda.is_available():
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"""
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## app.py:
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def translate_text(text, target_language='en'):
|
13 |
+
API_URL = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-ar-en"
|
14 |
+
headers = {"Authorization": f"Bearer {os.getenv('API_TOKEN')}"}
|
15 |
+
response = requests.post(API_URL, headers=headers, json=text)
|
16 |
|
17 |
+
if response.status_code == 200:
|
18 |
+
return response.json()[0]['translation_text']
|
19 |
|
20 |
+
else:
|
21 |
+
print("Failed to translate text:", response.text)
|
22 |
+
return text # Return the original text if translation fails
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Function to post data to an API and return response
|
25 |
+
def query(payload, API_URL, headers):
|
26 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
27 |
+
return response.content
|
|
|
28 |
|
29 |
+
# Function to generate images based on prompts using the Hugging Face API
|
30 |
+
def generate_image(prompt, model_choice, translate=False):
|
31 |
+
if translate:
|
32 |
+
prompt = translate_text(prompt, target_language='en') # Assuming you want to translate to English
|
33 |
+
model_urls = {
|
34 |
+
"Stable Diffusion v1.5": "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5",
|
35 |
|
36 |
+
}
|
37 |
+
API_URL = model_urls[model_choice]
|
|
|
|
|
38 |
|
39 |
+
headers = {"Authorization": f"Bearer {os.getenv('API_TOKEN')}"}
|
40 |
+
payload = {"inputs": prompt}
|
41 |
+
data = query(payload, API_URL, headers)
|
42 |
+
try:
|
43 |
+
# Load the image from byte data
|
44 |
+
image = Image.open(BytesIO(data))
|
45 |
+
# Resize the image
|
46 |
+
image = image.resize((400, 400))
|
47 |
+
# Convert the image object back to bytes for Gradio output
|
48 |
+
buf = BytesIO()
|
49 |
+
image.save(buf, format='PNG')
|
50 |
+
buf.seek(0)
|
51 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
except Exception as e:
|
54 |
+
print("Error processing the image:", e)
|
55 |
+
return None # Return None or an appropriate error message/image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Set up environment variable correctly
|
58 |
+
API_TOKEN = os.getenv("API_TOKEN")
|
59 |
+
|
60 |
+
# Styling with custom CSS
|
61 |
+
css = """
|
62 |
+
body {background-color: #f0f2f5;}
|
63 |
+
.gradio-app {background-color: #ffffff; border-radius: 12px; box-shadow: 0 0 12px rgba(0,0,0,0.1);}
|
64 |
+
button {color: white; background-color: #106BA3; border: none; border-radius: 5px;}
|
65 |
+
"""
|
66 |
|
67 |
+
# Define interface
|
68 |
+
title = "نموذج توليد الصور"
|
69 |
+
description = "اكتب وصف للصورة التي تود من النظام التوليدي انشاءها. على سبيل المثال: 'قطة ترتدي قبعة في مشهد شتوي'."
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=generate_image,
|
72 |
+
inputs=[
|
73 |
+
gr.components.Textbox(lines=2, placeholder="Enter the description of the image here..."),
|
74 |
+
gr.components.Dropdown(choices=["Stable Diffusion v1.5",], label="Choose Model", value='Stable Diffusion v1.5'),
|
75 |
+
gr.components.Checkbox(label="Translate The Text Before Generating Image", value=False)
|
76 |
+
],
|
77 |
+
outputs=gr.components.Image(),
|
78 |
+
title=title,
|
79 |
+
description=description,
|
80 |
+
theme="default",
|
81 |
+
css=css
|
82 |
+
)
|
83 |
+
# Launch the interface
|
84 |
+
iface.launch()
|