import torch import requests import numpy as np from io import BytesIO from diffusers import DiffusionPipeline from PIL import Image pipeline = DiffusionPipeline.from_pretrained( "dylanebert/LGM-full", custom_pipeline="dylanebert/LGM-full", torch_dtype=torch.float16, trust_remote_code=True, ).to("cuda") input_url = "https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg" input_image = Image.open(BytesIO(requests.get(input_url).content)) input_image = np.array(input_image, dtype=np.float32) / 255.0 result = pipeline("", input_image) result_path = "/tmp/output.ply" pipeline.save_ply(result, result_path)