malteos's picture
Update app.py
78d2792
raw
history blame
7.64 kB
"""
Run via: streamlit run app.py
"""
import json
import logging
import requests
import streamlit as st
import torch
from datasets import load_dataset
from datasets.dataset_dict import DatasetDict
from transformers import AutoTokenizer, AutoModel
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
model_hub_url = 'https://huggingface.co/malteos/aspect-scibert-task'
about_page_markdown = f"""# πŸ” Find Papers With Similar Task
See
- GitHub: https://github.com/malteos/aspect-document-embeddings
- Paper: #TODO
- Model hub: https://huggingface.co/malteos/aspect-scibert-task
"""
# Page setup
st.set_page_config(
page_title="Papers with similar Task",
page_icon="πŸ”",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get help': None,
'Report a bug': None,
'About': about_page_markdown,
}
)
aspect_labels = {
'task': 'Task 🎯 ',
'method': 'Method πŸ”¨ ',
'dataset': 'Dataset 🏷️',
}
aspects = list(aspect_labels.keys())
tokenizer_name_or_path = f'malteos/aspect-scibert-{aspects[0]}' # any aspect
dataset_config = 'malteos/aspect-paper-metadata'
@st.cache(show_spinner=False)
def st_load_model(name_or_path):
with st.spinner(f'Loading the model `{name_or_path}` (this might take a while)...'):
model = AutoModel.from_pretrained(name_or_path)
return model
@st.cache(show_spinner=False)
def st_load_dataset(name_or_path):
with st.spinner('Loading the dataset and search index (this might take a while)...'):
dataset = load_dataset(name_or_path)
if isinstance(dataset, DatasetDict):
dataset = dataset['train']
# load existing FAISS index for each aspect
for a in aspects:
dataset.load_faiss_index(f'{a}_embeddings', f'{a}_embeddings.faiss')
return dataset
aspect_to_model = dict(
task=st_load_model('malteos/aspect-scibert-task'),
method=st_load_model('malteos/aspect-scibert-method'),
dataset=st_load_model('malteos/aspect-scibert-dataset'),
)
dataset = st_load_dataset(dataset_config)
@st.cache(show_spinner=False)
def get_paper(doc_id):
res = requests.get(f'https://api.semanticscholar.org/v1/paper/{doc_id}')
if res.status_code == 200:
return res.json()
else:
raise ValueError(f'Cannot load paper from S2 API: {doc_id}')
def get_embedding(input_text, user_aspect):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
# preprocess the input
inputs = tokenizer(input_text, padding=True, truncation=True, return_tensors="pt", max_length=512)
# inference
outputs = aspect_to_model[user_aspect](**inputs)
# Mean pool the token-level embeddings to get sentence-level embeddings
embeddings = torch.sum(
outputs["last_hidden_state"] * inputs['attention_mask'].unsqueeze(-1), dim=1
) / torch.clamp(torch.sum(inputs['attention_mask'], dim=1, keepdims=True), min=1e-9)
return embeddings.detach().numpy()[0]
#@st.cache(show_spinner=False)
def find_related_papers(paper_id, user_aspect):
with st.spinner('Searching for related papers...'):
paper_id = paper_id.strip() # remove white spaces
paper = get_paper(paper_id)
if paper is None or 'title' not in paper or paper['title'] is None or 'abstract' not in paper or paper['abstract'] is None:
raise ValueError(f'Could not retrieve title and abstract for input paper (the paper is probably behind a paywall): {paper_id}')
title_abs = paper['title'] + ': ' + paper['abstract']
result = dict(
paper=paper,
aspect=user_aspect,
)
result.update(dict(
#embeddings=embeddings.tolist(),
))
# Retrieval
prompt = get_embedding(title_abs, user_aspect)
scores, retrieved_examples = dataset.get_nearest_examples(f'{user_aspect}_embeddings', prompt, k=10)
result.update(dict(
related_papers=retrieved_examples,
))
return result
# Page
st.title('Aspect-based Paper Similarity')
st.markdown("""This demo showcases [Specialized Document Embeddings for Aspect-based Research Paper Similarity](#TODO).""")
# Introduction
st.markdown(f"""The model was trained using a triplet loss on machine learning papers from the [paperswithcode.com](https://paperswithcode.com/) corpus with the objective of pulling embeddings of papers with the same task, method, or dataset close together.
For a more comprehensive overview of the model check out the [model card on πŸ€— Model Hub]({model_hub_url}) or read [our paper](#TODO).""")
st.markdown("""Enter a ArXiv ID or a DOI of a paper for that you want find similar papers. The title and abstract of the input paper must be available through the [Semantic Scholar API](https://www.semanticscholar.org/product/api).
Try it yourself! πŸ‘‡""",
unsafe_allow_html=True)
# Demo
with st.form("aspect-input", clear_on_submit=False):
paper_id = st.text_input(
label='Enter paper ID (format "arXiv:<arxiv_id>", "<doi>", or "ACL:<acl_id>"):',
# value="arXiv:2202.06671",
placeholder='Any DOI, ACL, or ArXiv ID'
)
example_labels = {
"arXiv:1902.06818": "Data augmentation for low resource sentiment analysis using generative adversarial networks",
"arXiv:2202.06671": "Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings",
"ACL:N19-1423": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
"10.18653/v1/S16-1001": "SemEval-2016 Task 4: Sentiment Analysis in Twitter",
"10.1145/3065386": "ImageNet classification with deep convolutional neural networks",
"arXiv:2101.08700": "Multi-sense embeddings through a word sense disambiguation process",
"10.1145/3340531.3411878": "Incremental and parallel computation of structural graph summaries for evolving graphs",
}
example = st.selectbox(
label='Or select an example:',
options=list(example_labels.keys()),
format_func=lambda option_key: f'{example_labels[option_key]} ({option_key})',
)
user_aspect = st.radio(
label="In what aspect are you interested?",
options=aspects,
format_func=lambda option_key: aspect_labels[option_key],
)
cols = st.columns(3)
submitted = cols[1].form_submit_button("Find related papers")
# Listener
if submitted:
if paper_id or example:
try:
result = find_related_papers(paper_id if paper_id else example, user_aspect)
input_paper = result['paper']
related_papers = result['related_papers']
# with st.empty():
st.markdown(
f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''',
unsafe_allow_html=True)
related_html = '<ul>'
for i in range(len(related_papers['paper_id'])):
related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>'''
related_html += '</ul>'
st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True)
except (TypeError, ValueError, KeyError) as e:
st.error(f'**Error**: {e}')
else:
st.error('**Error**: No paper ID provided. Please provide a ArXiv ID or DOI.')