Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
|
3 |
+
Run via: streamlit run app.py
|
4 |
+
|
5 |
+
"""
|
6 |
+
|
7 |
+
import json
|
8 |
+
import logging
|
9 |
+
|
10 |
+
import requests
|
11 |
+
import streamlit as st
|
12 |
+
import torch
|
13 |
+
from datasets import load_dataset
|
14 |
+
from datasets.dataset_dict import DatasetDict
|
15 |
+
from transformers import AutoTokenizer, AutoModel
|
16 |
+
|
17 |
+
logging.basicConfig(
|
18 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
19 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
20 |
+
level=logging.INFO,
|
21 |
+
)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
model_hub_url = 'https://huggingface.co/malteos/aspect-scibert-task'
|
25 |
+
|
26 |
+
about_page_markdown = f"""# π Find Papers With Similar Task
|
27 |
+
|
28 |
+
See
|
29 |
+
- GitHub: https://github.com/malteos/aspect-document-embeddings
|
30 |
+
- Paper: #TODO
|
31 |
+
- Model hub: https://huggingface.co/malteos/aspect-scibert-task
|
32 |
+
|
33 |
+
"""
|
34 |
+
|
35 |
+
# Page setup
|
36 |
+
st.set_page_config(
|
37 |
+
page_title="Papers with similar Task",
|
38 |
+
page_icon="π",
|
39 |
+
layout="centered",
|
40 |
+
initial_sidebar_state="auto",
|
41 |
+
menu_items={
|
42 |
+
'Get help': None,
|
43 |
+
'Report a bug': None,
|
44 |
+
'About': about_page_markdown,
|
45 |
+
}
|
46 |
+
)
|
47 |
+
|
48 |
+
aspects = [
|
49 |
+
'task', 'method', 'dataset'
|
50 |
+
]
|
51 |
+
tokenizer_name_or_path = f'malteos/aspect-scibert-{aspects[0]}' # any aspect
|
52 |
+
dataset_config = 'malteos/aspect-paper-metadata'
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
|
55 |
+
|
56 |
+
|
57 |
+
@st.cache(show_spinner=False)
|
58 |
+
def st_load_model(name_or_path):
|
59 |
+
with st.spinner(f'Loading the model `{name_or_path}` (this might take a while)...'):
|
60 |
+
model = AutoModel.from_pretrained(name_or_path)
|
61 |
+
return model
|
62 |
+
|
63 |
+
|
64 |
+
@st.cache(show_spinner=False)
|
65 |
+
def st_load_dataset(name_or_path):
|
66 |
+
with st.spinner('Loading the dataset (this might take a while)...'):
|
67 |
+
dataset = load_dataset(name_or_path)
|
68 |
+
|
69 |
+
if isinstance(dataset, DatasetDict):
|
70 |
+
dataset = dataset['train']
|
71 |
+
|
72 |
+
# load existing faiss
|
73 |
+
for a in aspects:
|
74 |
+
dataset.load_faiss_index(f'{a}_embeddings', f'{a}_embeddings.faiss')
|
75 |
+
|
76 |
+
# add faiss
|
77 |
+
#dataset.add_faiss_index(column=f'{aspect}_embeddings')
|
78 |
+
#loaded_dataset.add_faiss_index(column='method_embeddings')
|
79 |
+
#loaded_dataset.add_faiss_index(column='dataset_embeddings')
|
80 |
+
|
81 |
+
return dataset
|
82 |
+
|
83 |
+
|
84 |
+
aspect_to_model = dict(
|
85 |
+
task=st_load_model('malteos/aspect-scibert-task'),
|
86 |
+
method=st_load_model('malteos/aspect-scibert-method'),
|
87 |
+
dataset=st_load_model('malteos/aspect-scibert-dataset'),
|
88 |
+
)
|
89 |
+
dataset = st_load_dataset(dataset_config)
|
90 |
+
|
91 |
+
|
92 |
+
def get_paper(doc_id):
|
93 |
+
res = requests.get(f'https://api.semanticscholar.org/v1/paper/{doc_id}')
|
94 |
+
|
95 |
+
if res.status_code == 200:
|
96 |
+
return res.json()
|
97 |
+
else:
|
98 |
+
raise ValueError(f'Cannot load paper from S2 API: {doc_id}')
|
99 |
+
|
100 |
+
|
101 |
+
def find_related_papers(paper_id, user_aspect):
|
102 |
+
# Add result to session
|
103 |
+
|
104 |
+
paper = get_paper(paper_id)
|
105 |
+
|
106 |
+
if paper is None or 'title' not in paper or 'abstract' not in paper:
|
107 |
+
raise ValueError('Could not retrieve data for input paper')
|
108 |
+
|
109 |
+
title_abs = paper['title'] + ': ' + paper['abstract']
|
110 |
+
|
111 |
+
# preprocess the input
|
112 |
+
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
113 |
+
|
114 |
+
# inference
|
115 |
+
outputs = aspect_to_model[user_aspect](**inputs)
|
116 |
+
|
117 |
+
# logger.info(f'attention_mask: {inputs["attention_mask"].shape}')
|
118 |
+
#
|
119 |
+
# logger.info(f'Outputs: {outputs["last_hidden_state"]}')
|
120 |
+
# logger.info(f'Outputs: {outputs["last_hidden_state"].shape}')
|
121 |
+
|
122 |
+
# Mean pool the token-level embeddings to get sentence-level embeddings
|
123 |
+
embeddings = torch.sum(
|
124 |
+
outputs["last_hidden_state"] * inputs['attention_mask'].unsqueeze(-1), dim=1
|
125 |
+
) / torch.clamp(torch.sum(inputs['attention_mask'], dim=1, keepdims=True), min=1e-9)
|
126 |
+
|
127 |
+
result = dict(
|
128 |
+
paper=paper,
|
129 |
+
aspect=user_aspect,
|
130 |
+
)
|
131 |
+
|
132 |
+
result.update(dict(
|
133 |
+
#embeddings=embeddings.tolist(),
|
134 |
+
))
|
135 |
+
|
136 |
+
# Retrieval
|
137 |
+
prompt = embeddings.detach().numpy()[0]
|
138 |
+
scores, retrieved_examples = dataset.get_nearest_examples(f'{user_aspect}_embeddings', prompt, k=10)
|
139 |
+
|
140 |
+
result.update(dict(
|
141 |
+
related_papers=retrieved_examples,
|
142 |
+
))
|
143 |
+
|
144 |
+
# st.session_state.results.append(result)
|
145 |
+
|
146 |
+
return result
|
147 |
+
|
148 |
+
|
149 |
+
# # Start session
|
150 |
+
# if 'results' not in st.session_state:
|
151 |
+
# st.session_state.results = []
|
152 |
+
|
153 |
+
# Page
|
154 |
+
st.title('Aspect-based Paper Similarity')
|
155 |
+
st.markdown("""This demo showcases [Specialized Document Embeddings for Aspect-based Research Paper Similarity](#TODO).""")
|
156 |
+
|
157 |
+
# Introduction
|
158 |
+
st.markdown(f"""The model was trained using a triplet loss on machine learning papers from the [paperswithcode.com](https://paperswithcode.com/) corpus with the objective of pulling embeddings of papers with the same task, method, or datasetclose together. For a more comprehensive overview of the model check out the [model card on π€ Model Hub]({model_hub_url}) or read [our paper](#TODO).
|
159 |
+
""")
|
160 |
+
st.markdown("""Enter a ArXiv ID or a DOI of a paper for that you want find similar papers.
|
161 |
+
|
162 |
+
Try it yourself! π""",
|
163 |
+
unsafe_allow_html=True)
|
164 |
+
|
165 |
+
# Demo
|
166 |
+
with st.form("aspect-input", clear_on_submit=False):
|
167 |
+
paper_id = st.text_input(
|
168 |
+
label='Enter paper ID (format "arXiv:<arxiv_id>", "<doi>", or "ACL:<acl_id>"):',
|
169 |
+
# value="arXiv:2202.06671",
|
170 |
+
placeholder='Any DOI, ACL, or ArXiv ID'
|
171 |
+
)
|
172 |
+
|
173 |
+
example = st.selectbox(
|
174 |
+
label='Or select example',
|
175 |
+
options=[
|
176 |
+
"arXiv:2202.06671",
|
177 |
+
'10.1016/j.eswa.2019.06.026'
|
178 |
+
]
|
179 |
+
)
|
180 |
+
|
181 |
+
# click_clear = st.button('clear text input', key=1)
|
182 |
+
# if click_clear:
|
183 |
+
# paper_id = st.text_input(
|
184 |
+
# label='Enter paper ID (arXiv:<arxiv_id>, or <doi>):', value="XXX", placeholder='123')
|
185 |
+
|
186 |
+
user_aspect = st.radio(
|
187 |
+
label="In what aspect are you interested?",
|
188 |
+
options=aspects
|
189 |
+
)
|
190 |
+
|
191 |
+
cols = st.columns(3)
|
192 |
+
submitted = cols[1].form_submit_button("Find related papers")
|
193 |
+
|
194 |
+
# Listener
|
195 |
+
if submitted:
|
196 |
+
if paper_id or example:
|
197 |
+
with st.spinner('Finding related papers...'):
|
198 |
+
try:
|
199 |
+
result = find_related_papers(paper_id if paper_id else example, user_aspect)
|
200 |
+
|
201 |
+
input_paper = result['paper']
|
202 |
+
related_papers = result['related_papers']
|
203 |
+
|
204 |
+
# with st.empty():
|
205 |
+
|
206 |
+
st.markdown(
|
207 |
+
f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''',
|
208 |
+
unsafe_allow_html=True)
|
209 |
+
|
210 |
+
related_html = '<ul>'
|
211 |
+
|
212 |
+
for i in range(len(related_papers['paper_id'])):
|
213 |
+
related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>'''
|
214 |
+
|
215 |
+
related_html += '</ul>'
|
216 |
+
|
217 |
+
st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True)
|
218 |
+
|
219 |
+
except (TypeError, ValueError, KeyError) as e:
|
220 |
+
st.error(f'**Error**: {e}')
|
221 |
+
|
222 |
+
else:
|
223 |
+
st.error('**Error**: No paper ID provided. Please provide a ArXiv ID or DOI.')
|
224 |
+
|
225 |
+
# # Results
|
226 |
+
# if 'results' in st.session_state and st.session_state.results:
|
227 |
+
# first = True
|
228 |
+
# for result in st.session_state.results[::-1]:
|
229 |
+
# if not first:
|
230 |
+
# st.markdown("---")
|
231 |
+
# # st.markdown(f"ID:\n> {result['paperId']}")
|
232 |
+
# # col_1, col_2, col_3 = st.columns([1,2,2])
|
233 |
+
# # col_1.metric(label='', value=json.dumps(result))
|
234 |
+
# # col_2.metric(label='Label', value=f"fooo")
|
235 |
+
# # col_3.metric(label='Score', value=f"123")
|
236 |
+
# input_paper = result['paper']
|
237 |
+
# related_papers = result['related_papers']
|
238 |
+
#
|
239 |
+
# # with st.empty():
|
240 |
+
#
|
241 |
+
# st.markdown(f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''', unsafe_allow_html=True)
|
242 |
+
#
|
243 |
+
# related_html = '<ul>'
|
244 |
+
#
|
245 |
+
# for i in range(len(related_papers['paper_id'])):
|
246 |
+
# related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>'''
|
247 |
+
#
|
248 |
+
# related_html += '</ul>'
|
249 |
+
#
|
250 |
+
# st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True)
|
251 |
+
#
|
252 |
+
# # st.markdown(f'''Related papers: {related_html}''', unsafe_allow_html=True)
|
253 |
+
#
|
254 |
+
# first = False
|