Spaces:
Runtime error
Runtime error
File size: 34,258 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenVINO optimizations for Knowledge graphs\n",
"\n",
"The goal of this notebook is to showcase performance optimizations for the ConvE knowledge graph embeddings model using the Intel® Distribution of OpenVINO™ Toolkit. <br>\n",
"The optimizations process contains the following steps:\n",
"\n",
"1. Export the trained model to a format suitable for OpenVINO optimizations and inference\n",
"2. Report the inference performance speedup obtained with the optimized OpenVINO model\n",
"\n",
"The ConvE model is an implementation of the paper - \"Convolutional 2D Knowledge Graph Embeddings\" (https://arxiv.org/abs/1707.01476). <br>\n",
"The sample dataset can be downloaded from: https://github.com/TimDettmers/ConvE/tree/master/countries/countries_S1\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Windows specific settings](#Windows-specific-settings)\n",
"- [Import the packages needed for successful execution](#Import-the-packages-needed-for-successful-execution)\n",
" - [Settings: Including path to the serialized model files and input data files](#Settings:-Including-path-to-the-serialized-model-files-and-input-data-files)\n",
" - [Download Model Checkpoint](#Download-Model-Checkpoint)\n",
" - [Defining the ConvE model class](#Defining-the-ConvE-model-class)\n",
" - [Defining the dataloader](#Defining-the-dataloader)\n",
" - [Evaluate the trained ConvE model](#Evaluate-the-trained-ConvE-model)\n",
" - [Prediction on the Knowledge graph.](#Prediction-on-the-Knowledge-graph.)\n",
" - [Convert the trained PyTorch model to IR format for OpenVINO inference](#Convert-the-trained-PyTorch-model-to-IR-format-for-OpenVINO-inference)\n",
" - [Evaluate the model performance with OpenVINO](#Evaluate-the-model-performance-with-OpenVINO)\n",
"- [Select inference device](#Select-inference-device)\n",
" - [Determine the platform specific speedup obtained through OpenVINO graph optimizations](#Determine-the-platform-specific-speedup-obtained-through-OpenVINO-graph-optimizations)\n",
" - [Benchmark the converted OpenVINO model using benchmark app](#Benchmark-the-converted-OpenVINO-model-using-benchmark-app)\n",
" - [Conclusions](#Conclusions)\n",
" - [References](#References)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2023.1.0\" torch scikit-learn tqdm --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Windows specific settings\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# On Windows, add the directory that contains cl.exe to the PATH\n",
"# to enable PyTorch to find the required C++ tools.\n",
"# This code assumes that Visual Studio 2019 is installed in the default directory.\n",
"# If you have a different C++ compiler, please add the correct path\n",
"# to os.environ[\"PATH\"] directly.\n",
"# Note that the C++ Redistributable is not enough to run this notebook.\n",
"\n",
"# Adding the path to os.environ[\"LIB\"] is not always required\n",
"# - it depends on the system's configuration\n",
"\n",
"import sys\n",
"\n",
"if sys.platform == \"win32\":\n",
" import distutils.command.build_ext\n",
" import os\n",
" from pathlib import Path\n",
"\n",
" VS_INSTALL_DIR = r\"C:/Program Files (x86)/Microsoft Visual Studio\"\n",
" cl_paths = sorted(list(Path(VS_INSTALL_DIR).glob(\"**/Hostx86/x64/cl.exe\")))\n",
" if len(cl_paths) == 0:\n",
" raise ValueError(\n",
" \"Cannot find Visual Studio. This notebook requires a C++ compiler. If you installed \"\n",
" \"a C++ compiler, please add the directory that contains\"\n",
" \"cl.exe to `os.environ['PATH']`.\"\n",
" )\n",
" else:\n",
" # If multiple versions of MSVC are installed, get the most recent version\n",
" cl_path = cl_paths[-1]\n",
" vs_dir = str(cl_path.parent)\n",
" os.environ[\"PATH\"] += f\"{os.pathsep}{vs_dir}\"\n",
" # Code for finding the library dirs from\n",
" # https://stackoverflow.com/questions/47423246/get-pythons-lib-path\n",
" d = distutils.core.Distribution()\n",
" b = distutils.command.build_ext.build_ext(d)\n",
" b.finalize_options()\n",
" os.environ[\"LIB\"] = os.pathsep.join(b.library_dirs)\n",
" print(f\"Added {vs_dir} to PATH\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import the packages needed for successful execution\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from pathlib import Path\n",
"import sys\n",
"import time\n",
"\n",
"import numpy as np\n",
"import torch\n",
"from sklearn.metrics import accuracy_score\n",
"from torch.nn import functional as F, Parameter\n",
"from torch.nn.init import xavier_normal_\n",
"\n",
"import openvino as ov\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import download_file"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Settings: Including path to the serialized model files and input data files\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Path to the pretrained model checkpoint\n",
"modelpath = Path(\"models/conve.pt\")\n",
"\n",
"# Entity and relation embedding dimensions\n",
"EMB_DIM = 300\n",
"\n",
"# Top K vals to consider from the predictions\n",
"TOP_K = 2\n",
"\n",
"# Required for OpenVINO conversion\n",
"output_dir = Path(\"models\")\n",
"base_model_name = \"conve\"\n",
"\n",
"output_dir.mkdir(exist_ok=True)\n",
"\n",
"# Paths where PyTorch and OpenVINO IR models will be stored\n",
"ir_path = Path(output_dir / base_model_name).with_suffix(\".xml\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ddd42480f61647ffaaf292831a28cc35",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"data/kg_training_entids.txt: 0%| | 0.00/3.79k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c15838dc58a435ca86fe960150c3a92",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"data/kg_training_relids.txt: 0%| | 0.00/62.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b431e3af943c4540b6611d9a0a621b92",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"data/e1rel_to_e2_ranking_test.json: 0%| | 0.00/19.1k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data_folder = \"data\"\n",
"\n",
"# Download the file containing the entities and entity IDs\n",
"entdatapath = download_file(\n",
" \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/countries_S1/kg_training_entids.txt\",\n",
" directory=data_folder,\n",
")\n",
"\n",
"# Download the file containing the relations and relation IDs\n",
"reldatapath = download_file(\n",
" \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/countries_S1/kg_training_relids.txt\",\n",
" directory=data_folder,\n",
")\n",
"\n",
"# Download the test data file\n",
"testdatapath = download_file(\n",
" \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/json/countries_S1/e1rel_to_e2_ranking_test.json\",\n",
" directory=data_folder,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download Model Checkpoint\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'models/conve.pt' already exists.\n"
]
},
{
"data": {
"text/plain": [
"PosixPath('/home/ea/work/openvino_notebooks/notebooks/knowledge-graphs-conve/models/conve.pt')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_url = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/knowledge-graph-embeddings/conve.pt\"\n",
"\n",
"download_file(model_url, filename=modelpath.name, directory=modelpath.parent)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Defining the ConvE model class\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Model implementation reference: https://github.com/TimDettmers/ConvE\n",
"class ConvE(torch.nn.Module):\n",
" def __init__(self, num_entities, num_relations, emb_dim):\n",
" super(ConvE, self).__init__()\n",
" # Embedding tables for entity and relations with num_uniq_ent in y-dim, emb_dim in x-dim\n",
" self.emb_e = torch.nn.Embedding(num_entities, emb_dim, padding_idx=0)\n",
" self.ent_weights_matrix = torch.ones([num_entities, emb_dim], dtype=torch.float64)\n",
" self.emb_rel = torch.nn.Embedding(num_relations, emb_dim, padding_idx=0)\n",
" self.ne = num_entities\n",
" self.nr = num_relations\n",
" self.inp_drop = torch.nn.Dropout(0.2)\n",
" self.hidden_drop = torch.nn.Dropout(0.3)\n",
" self.feature_map_drop = torch.nn.Dropout2d(0.2)\n",
" self.loss = torch.nn.BCELoss()\n",
" self.conv1 = torch.nn.Conv2d(1, 32, (3, 3), 1, 0, bias=True)\n",
" self.bn0 = torch.nn.BatchNorm2d(1)\n",
" self.bn1 = torch.nn.BatchNorm2d(32)\n",
" self.ln0 = torch.nn.LayerNorm(emb_dim)\n",
" self.register_parameter(\"b\", Parameter(torch.zeros(num_entities)))\n",
" self.fc = torch.nn.Linear(16128, emb_dim)\n",
"\n",
" def init(self):\n",
" \"\"\"Initializes the model\"\"\"\n",
" # Xavier initialization\n",
" xavier_normal_(self.emb_e.weight.data)\n",
" xavier_normal_(self.emb_rel.weight.data)\n",
"\n",
" def forward(self, e1, rel):\n",
" \"\"\"Forward pass on the model.\n",
" :param e1: source entity\n",
" :param rel: relation between the source and target entities\n",
" Returns the model predictions for the target entities\n",
" \"\"\"\n",
" e1_embedded = self.emb_e(e1).view(-1, 1, 10, 30)\n",
" rel_embedded = self.emb_rel(rel).view(-1, 1, 10, 30)\n",
" stacked_inputs = torch.cat([e1_embedded, rel_embedded], 2)\n",
" stacked_inputs = self.bn0(stacked_inputs)\n",
" x = self.inp_drop(stacked_inputs)\n",
" x = self.conv1(x)\n",
" x = self.bn1(x)\n",
" x = F.relu(x)\n",
" x = self.feature_map_drop(x)\n",
" x = x.view(1, -1)\n",
" x = self.fc(x)\n",
" x = self.hidden_drop(x)\n",
" x = self.ln0(x)\n",
" x = F.relu(x)\n",
" x = torch.mm(x, self.emb_e.weight.transpose(1, 0))\n",
" x = self.hidden_drop(x)\n",
" x += self.b.expand_as(x)\n",
" pred = torch.nn.functional.softmax(x, dim=1)\n",
" return pred"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Defining the dataloader\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"class DataLoader:\n",
" def __init__(self):\n",
" super(DataLoader, self).__init__()\n",
"\n",
" self.ent_path = entdatapath\n",
" self.rel_path = reldatapath\n",
" self.test_file = testdatapath\n",
" self.entity_ids, self.ids2entities = self.load_data(data_path=self.ent_path)\n",
" self.rel_ids, self.ids2rel = self.load_data(data_path=self.rel_path)\n",
" self.test_triples_list = self.convert_triples(data_path=self.test_file)\n",
"\n",
" def load_data(self, data_path):\n",
" \"\"\"Creates a dictionary of data items with corresponding ids\"\"\"\n",
" item_dict, ids_dict = {}, {}\n",
" fp = open(data_path, \"r\")\n",
" lines = fp.readlines()\n",
" for line in lines:\n",
" name, id = line.strip().split(\"\\t\")\n",
" item_dict[name] = int(id)\n",
" ids_dict[int(id)] = name\n",
" fp.close()\n",
" return item_dict, ids_dict\n",
"\n",
" def convert_triples(self, data_path):\n",
" \"\"\"Creates a triple of source entity, relation and target entities\"\"\"\n",
" triples_list = []\n",
" dp = open(data_path, \"r\")\n",
" lines = dp.readlines()\n",
" for line in lines:\n",
" item_dict = json.loads(line.strip())\n",
" h = item_dict[\"e1\"]\n",
" r = item_dict[\"rel\"]\n",
" t = item_dict[\"e2_multi1\"].split(\"\\t\")\n",
" hrt_list = []\n",
" hrt_list.append(self.entity_ids[h])\n",
" hrt_list.append(self.rel_ids[r])\n",
" t_ents = []\n",
" for t_idx in t:\n",
" t_ents.append(self.entity_ids[t_idx])\n",
" hrt_list.append(t_ents)\n",
" triples_list.append(hrt_list)\n",
" dp.close()\n",
" return triples_list"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Evaluate the trained ConvE model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"First, we will evaluate the model performance using PyTorch. The goal is to make sure there are no accuracy differences between the original model inference and the model converted to OpenVINO intermediate representation inference results. <br>\n",
"Here, we use a simple accuracy metric to evaluate the model performance on a test dataset. However, it is typical to use metrics such as Mean Reciprocal Rank, Hits@10 etc."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Average time taken for inference: 0.8238554000854492 ms\n",
"Mean accuracy of the model on the test dataset: 0.875\n"
]
}
],
"source": [
"data = DataLoader()\n",
"num_entities = len(data.entity_ids)\n",
"num_relations = len(data.rel_ids)\n",
"\n",
"model = ConvE(num_entities=num_entities, num_relations=num_relations, emb_dim=EMB_DIM)\n",
"model.load_state_dict(torch.load(modelpath))\n",
"model.eval()\n",
"\n",
"pt_inf_times = []\n",
"\n",
"triples_list = data.test_triples_list\n",
"num_test_samples = len(triples_list)\n",
"pt_acc = 0.0\n",
"for i in range(num_test_samples):\n",
" test_sample = triples_list[i]\n",
" h, r, t = test_sample\n",
" start_time = time.time()\n",
" logits = model.forward(e1=torch.tensor(h), rel=torch.tensor(r))\n",
" end_time = time.time()\n",
" pt_inf_times.append(end_time - start_time)\n",
" score, pred = torch.topk(logits, TOP_K, 1)\n",
"\n",
" gt = np.array(sorted(t))\n",
" pred = np.array(sorted(pred[0].cpu().detach()))\n",
" pt_acc += accuracy_score(gt, pred)\n",
"\n",
"avg_pt_time = np.mean(pt_inf_times) * 1000\n",
"print(f\"Average time taken for inference: {avg_pt_time} ms\")\n",
"print(f\"Mean accuracy of the model on the test dataset: {pt_acc/num_test_samples}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prediction on the Knowledge graph.\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Here, we perform the entity prediction on the knowledge graph, as a sample evaluation task. <br>\n",
"We pass the source entity `san_marino` and relation `locatedIn` to the knowledge graph and obtain the target entity predictions. <br>\n",
"Expected predictions are target entities that form a factual triple with the entity and relation passed as inputs to the knowledge graph."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source Entity: san_marino, Relation: locatedin, Target entity prediction: southern_europe\n",
"Source Entity: san_marino, Relation: locatedin, Target entity prediction: europe\n"
]
}
],
"source": [
"entitynames_dict = data.ids2entities\n",
"\n",
"ent = \"san_marino\"\n",
"rel = \"locatedin\"\n",
"\n",
"h_idx = data.entity_ids[ent]\n",
"r_idx = data.rel_ids[rel]\n",
"\n",
"logits = model.forward(torch.tensor(h_idx), torch.tensor(r_idx))\n",
"score, pred = torch.topk(logits, TOP_K, 1)\n",
"\n",
"for j, id in enumerate(pred[0].cpu().detach().numpy()):\n",
" pred_entity = entitynames_dict[id]\n",
" print(f\"Source Entity: {ent}, Relation: {rel}, Target entity prediction: {pred_entity}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert the trained PyTorch model to IR format for OpenVINO inference\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To evaluate performance with OpenVINO, we can either convert the trained PyTorch model to an intermediate representation (IR) format. `ov.convert_model` function can be used for conversion PyTorch models to OpenVINO Model class instance, that is ready to load on device or can be saved on disk in OpenVINO Intermediate Representation (IR) format using `ov.save_model`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Converting the trained conve model to IR format\n"
]
}
],
"source": [
"print(\"Converting the trained conve model to IR format\")\n",
"\n",
"ov_model = ov.convert_model(model, example_input=(torch.tensor(1), torch.tensor(1)))\n",
"ov.save_model(ov_model, ir_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Evaluate the model performance with OpenVINO\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Now, we evaluate the model performance with the OpenVINO framework. In order to do so, make three main API calls:\n",
"\n",
"1. Initialize the Inference engine with `Core()`\n",
"2. Load the model with `read_model()`\n",
"3. Compile the model with `compile_model()`\n",
"\n",
"Then, the model can be inferred on by using the `create_infer_request()` API call."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"core = ov.Core()\n",
"ov_model = core.read_model(model=ir_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8075bb64a0b5497d820ddeaf3c840bf7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='CPU')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"CPU\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Average time taken for inference: 0.7051527500152588 ms\n",
"Mean accuracy of the model on the test dataset: 0.10416666666666667\n"
]
}
],
"source": [
"compiled_model = core.compile_model(model=ov_model, device_name=device.value)\n",
"input_layer_source = compiled_model.inputs[0]\n",
"input_layer_relation = compiled_model.inputs[1]\n",
"output_layer = compiled_model.output(0)\n",
"\n",
"ov_acc = 0.0\n",
"ov_inf_times = []\n",
"for i in range(num_test_samples):\n",
" test_sample = triples_list[i]\n",
" source, relation, target = test_sample\n",
" model_inputs = {\n",
" input_layer_source: np.int64(source),\n",
" input_layer_relation: np.int64(relation),\n",
" }\n",
" start_time = time.time()\n",
" result = compiled_model(model_inputs)[output_layer]\n",
" end_time = time.time()\n",
" ov_inf_times.append(end_time - start_time)\n",
" top_k_idxs = list(np.argpartition(result[0], -TOP_K)[-TOP_K:])\n",
"\n",
" gt = np.array(sorted(t))\n",
" pred = np.array(sorted(top_k_idxs))\n",
" ov_acc += accuracy_score(gt, pred)\n",
"\n",
"avg_ov_time = np.mean(ov_inf_times) * 1000\n",
"print(f\"Average time taken for inference: {avg_ov_time} ms\")\n",
"print(f\"Mean accuracy of the model on the test dataset: {ov_acc/num_test_samples}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Determine the platform specific speedup obtained through OpenVINO graph optimizations\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speedup with OpenVINO optimizations: 1.17 X\n"
]
}
],
"source": [
"# prevent division by zero\n",
"delimiter = max(avg_ov_time, np.finfo(float).eps)\n",
"\n",
"print(f\"Speedup with OpenVINO optimizations: {round(float(avg_pt_time)/float(delimiter),2)} X\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Benchmark the converted OpenVINO model using benchmark app\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The OpenVINO toolkit provides a benchmarking application to gauge the platform specific runtime performance that can be obtained under optimal configuration parameters for a given model. For more details refer to: https://docs.openvino.ai/2024/learn-openvino/openvino-samples/benchmark-tool.html\n",
"\n",
"Here, we use the benchmark application to obtain performance estimates under optimal configuration for the knowledge graph model inference. <br> \n",
"We obtain the average (AVG), minimum (MIN) as well as maximum (MAX) latency as well as the throughput performance (in samples/s) observed while running the benchmark application. <br> \n",
"The platform specific optimal configuration parameters determined by the benchmarking app for OpenVINO inference can also be obtained by looking at the benchmark app results. "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Benchmark OpenVINO model using the benchmark app\n",
"[Step 1/11] Parsing and validating input arguments\n",
"[ INFO ] Parsing input parameters\n",
"[Step 2/11] Loading OpenVINO Runtime\n",
"[ INFO ] OpenVINO:\n",
"[ INFO ] Build ................................. 2024.0.0-13770-9b52171d290\n",
"[ INFO ] \n",
"[ INFO ] Device info:\n",
"[ INFO ] CPU\n",
"[ INFO ] Build ................................. 2024.0.0-13770-9b52171d290\n",
"[ INFO ] \n",
"[ INFO ] \n",
"[Step 3/11] Setting device configuration\n",
"[ WARNING ] Performance hint was not explicitly specified in command line. Device(CPU) performance hint will be set to PerformanceMode.THROUGHPUT.\n",
"[Step 4/11] Reading model files\n",
"[ INFO ] Loading model files\n",
"[ INFO ] Read model took 8.35 ms\n",
"[ INFO ] Original model I/O parameters:\n",
"[ INFO ] Model inputs:\n",
"[ INFO ] e1 (node: e1) : i64 / [...] / []\n",
"[ INFO ] rel (node: rel) : i64 / [...] / []\n",
"[ INFO ] Model outputs:\n",
"[ INFO ] ***NO_NAME*** (node: aten::softmax/Softmax) : f32 / [...] / [1,271]\n",
"[Step 5/11] Resizing model to match image sizes and given batch\n",
"[ INFO ] Model batch size: 1\n",
"[Step 6/11] Configuring input of the model\n",
"[ INFO ] Model inputs:\n",
"[ INFO ] e1 (node: e1) : i64 / [...] / []\n",
"[ INFO ] rel (node: rel) : i64 / [...] / []\n",
"[ INFO ] Model outputs:\n",
"[ INFO ] ***NO_NAME*** (node: aten::softmax/Softmax) : f32 / [...] / [1,271]\n",
"[Step 7/11] Loading the model to the device\n",
"[ INFO ] Compile model took 53.61 ms\n",
"[Step 8/11] Querying optimal runtime parameters\n",
"[ INFO ] Model:\n",
"[ INFO ] NETWORK_NAME: Model0\n",
"[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18\n",
"[ INFO ] NUM_STREAMS: 18\n",
"[ INFO ] AFFINITY: Affinity.CORE\n",
"[ INFO ] INFERENCE_NUM_THREADS: 36\n",
"[ INFO ] PERF_COUNT: NO\n",
"[ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'>\n",
"[ INFO ] PERFORMANCE_HINT: THROUGHPUT\n",
"[ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE\n",
"[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0\n",
"[ INFO ] ENABLE_CPU_PINNING: True\n",
"[ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE\n",
"[ INFO ] ENABLE_HYPER_THREADING: True\n",
"[ INFO ] EXECUTION_DEVICES: ['CPU']\n",
"[ INFO ] CPU_DENORMALS_OPTIMIZATION: False\n",
"[ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0\n",
"[Step 9/11] Creating infer requests and preparing input tensors\n",
"[ WARNING ] No input files were given for input 'e1'!. This input will be filled with random values!\n",
"[ WARNING ] No input files were given for input 'rel'!. This input will be filled with random values!\n",
"[ INFO ] Fill input 'e1' with random values \n",
"[ INFO ] Fill input 'rel' with random values \n",
"[Step 10/11] Measuring performance (Start inference asynchronously, 18 inference requests, limits: 10000 ms duration)\n",
"[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).\n",
"[ INFO ] First inference took 4.97 ms\n",
"[Step 11/11] Dumping statistics report\n",
"[ INFO ] Execution Devices:['CPU']\n",
"[ INFO ] Count: 142056 iterations\n",
"[ INFO ] Duration: 10001.15 ms\n",
"[ INFO ] Latency:\n",
"[ INFO ] Median: 0.96 ms\n",
"[ INFO ] Average: 1.01 ms\n",
"[ INFO ] Min: 0.43 ms\n",
"[ INFO ] Max: 24.61 ms\n",
"[ INFO ] Throughput: 14203.97 FPS\n"
]
}
],
"source": [
"print(\"Benchmark OpenVINO model using the benchmark app\")\n",
"! benchmark_app -m $ir_path -d $device.value -api async -t 10 -shape \"input.1[1],input.2[1]\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Conclusions\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"In this notebook, we convert the trained PyTorch knowledge graph embeddings model to the OpenVINO format. <br>\n",
"We confirm that there are no accuracy differences post conversion. We also perform a sample evaluation on the knowledge graph.<br> \n",
"Then, we determine the platform specific speedup in runtime performance that can be obtained through OpenVINO graph optimizations. <br>\n",
"To learn more about the OpenVINO performance optimizations, refer to: https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference.html "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### References\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"1. Convolutional 2D Knowledge Graph Embeddings, Tim Dettmers et al. (https://arxiv.org/abs/1707.01476)\n",
"2. Model implementation: https://github.com/TimDettmers/ConvE \n",
"\n",
"The ConvE model implementation used in this notebook is licensed under the MIT License. The license is displayed below: <br>\n",
"MIT License\n",
"\n",
"Copyright (c) 2017 Tim Dettmers\n",
"\n",
"Permission is hereby granted, free of charge, to any person obtaining a copy<br>\n",
"of this software and associated documentation files (the \"Software\"), to deal<br>\n",
"in the Software without restriction, including without limitation the rights<br>\n",
"to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br>\n",
"copies of the Software, and to permit persons to whom the Software is<br>\n",
"furnished to do so, subject to the following conditions:\n",
"\n",
"The above copyright notice and this permission notice shall be included in all<br>\n",
"copies or substantial portions of the Software.\n",
"\n",
"THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br>\n",
"IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br>\n",
"FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br>\n",
"AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br>\n",
"LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br>\n",
"OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE<br>\n",
"SOFTWARE."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://user-images.githubusercontent.com/29454499/210564312-82cda081-b2ed-4027-8251-ca57a97b4666.png",
"tags": {
"categories": [
"Model Demos",
"Optimize"
],
"libraries": [],
"other": [],
"tasks": [
"Knowledge Representation"
]
}
},
"vscode": {
"interpreter": {
"hash": "e0404472fd7b5b63117a9fa5c50283296e2708c2449c6090d2cdf8903f95897f"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|