Spaces:
Runtime error
Runtime error
File size: 13,487 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import numpy as np
import skimage.io as io
# from face_sdk import FaceDetection
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from skimage.transform import SimilarityTransform
from skimage.transform import warp
from PIL import Image, ImageFilter
import torch.nn.functional as F
import torchvision as tv
import torchvision.utils as vutils
import time
import cv2
import os
from skimage import img_as_ubyte
import json
import argparse
import dlib
def calculate_cdf(histogram):
"""
This method calculates the cumulative distribution function
:param array histogram: The values of the histogram
:return: normalized_cdf: The normalized cumulative distribution function
:rtype: array
"""
# Get the cumulative sum of the elements
cdf = histogram.cumsum()
# Normalize the cdf
normalized_cdf = cdf / float(cdf.max())
return normalized_cdf
def calculate_lookup(src_cdf, ref_cdf):
"""
This method creates the lookup table
:param array src_cdf: The cdf for the source image
:param array ref_cdf: The cdf for the reference image
:return: lookup_table: The lookup table
:rtype: array
"""
lookup_table = np.zeros(256)
lookup_val = 0
for src_pixel_val in range(len(src_cdf)):
lookup_val
for ref_pixel_val in range(len(ref_cdf)):
if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]:
lookup_val = ref_pixel_val
break
lookup_table[src_pixel_val] = lookup_val
return lookup_table
def match_histograms(src_image, ref_image):
"""
This method matches the source image histogram to the
reference signal
:param image src_image: The original source image
:param image ref_image: The reference image
:return: image_after_matching
:rtype: image (array)
"""
# Split the images into the different color channels
# b means blue, g means green and r means red
src_b, src_g, src_r = cv2.split(src_image)
ref_b, ref_g, ref_r = cv2.split(ref_image)
# Compute the b, g, and r histograms separately
# The flatten() Numpy method returns a copy of the array c
# collapsed into one dimension.
src_hist_blue, bin_0 = np.histogram(src_b.flatten(), 256, [0, 256])
src_hist_green, bin_1 = np.histogram(src_g.flatten(), 256, [0, 256])
src_hist_red, bin_2 = np.histogram(src_r.flatten(), 256, [0, 256])
ref_hist_blue, bin_3 = np.histogram(ref_b.flatten(), 256, [0, 256])
ref_hist_green, bin_4 = np.histogram(ref_g.flatten(), 256, [0, 256])
ref_hist_red, bin_5 = np.histogram(ref_r.flatten(), 256, [0, 256])
# Compute the normalized cdf for the source and reference image
src_cdf_blue = calculate_cdf(src_hist_blue)
src_cdf_green = calculate_cdf(src_hist_green)
src_cdf_red = calculate_cdf(src_hist_red)
ref_cdf_blue = calculate_cdf(ref_hist_blue)
ref_cdf_green = calculate_cdf(ref_hist_green)
ref_cdf_red = calculate_cdf(ref_hist_red)
# Make a separate lookup table for each color
blue_lookup_table = calculate_lookup(src_cdf_blue, ref_cdf_blue)
green_lookup_table = calculate_lookup(src_cdf_green, ref_cdf_green)
red_lookup_table = calculate_lookup(src_cdf_red, ref_cdf_red)
# Use the lookup function to transform the colors of the original
# source image
blue_after_transform = cv2.LUT(src_b, blue_lookup_table)
green_after_transform = cv2.LUT(src_g, green_lookup_table)
red_after_transform = cv2.LUT(src_r, red_lookup_table)
# Put the image back together
image_after_matching = cv2.merge([blue_after_transform, green_after_transform, red_after_transform])
image_after_matching = cv2.convertScaleAbs(image_after_matching)
return image_after_matching
def _standard_face_pts():
pts = (
np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0
- 1.0
)
return np.reshape(pts, (5, 2))
def _origin_face_pts():
pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32)
return np.reshape(pts, (5, 2))
def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0):
std_pts = _standard_face_pts() # [-1,1]
target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0
# print(target_pts)
h, w, c = img.shape
if normalize == True:
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0
# print(landmark)
affine = SimilarityTransform()
affine.estimate(target_pts, landmark)
return affine
def compute_inverse_transformation_matrix(img, landmark, normalize, target_face_scale=1.0):
std_pts = _standard_face_pts() # [-1,1]
target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0
# print(target_pts)
h, w, c = img.shape
if normalize == True:
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0
# print(landmark)
affine = SimilarityTransform()
affine.estimate(landmark, target_pts)
return affine
def show_detection(image, box, landmark):
plt.imshow(image)
print(box[2] - box[0])
plt.gca().add_patch(
Rectangle(
(box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none"
)
)
plt.scatter(landmark[0][0], landmark[0][1])
plt.scatter(landmark[1][0], landmark[1][1])
plt.scatter(landmark[2][0], landmark[2][1])
plt.scatter(landmark[3][0], landmark[3][1])
plt.scatter(landmark[4][0], landmark[4][1])
plt.show()
def affine2theta(affine, input_w, input_h, target_w, target_h):
# param = np.linalg.inv(affine)
param = affine
theta = np.zeros([2, 3])
theta[0, 0] = param[0, 0] * input_h / target_h
theta[0, 1] = param[0, 1] * input_w / target_h
theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1
theta[1, 0] = param[1, 0] * input_h / target_w
theta[1, 1] = param[1, 1] * input_w / target_w
theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1
return theta
def blur_blending(im1, im2, mask):
mask *= 255.0
kernel = np.ones((10, 10), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
mask = Image.fromarray(mask.astype("uint8")).convert("L")
im1 = Image.fromarray(im1.astype("uint8"))
im2 = Image.fromarray(im2.astype("uint8"))
mask_blur = mask.filter(ImageFilter.GaussianBlur(20))
im = Image.composite(im1, im2, mask)
im = Image.composite(im, im2, mask_blur)
return np.array(im) / 255.0
def blur_blending_cv2(im1, im2, mask):
mask *= 255.0
kernel = np.ones((9, 9), np.uint8)
mask = cv2.erode(mask, kernel, iterations=3)
mask_blur = cv2.GaussianBlur(mask, (25, 25), 0)
mask_blur /= 255.0
im = im1 * mask_blur + (1 - mask_blur) * im2
im /= 255.0
im = np.clip(im, 0.0, 1.0)
return im
# def Poisson_blending(im1,im2,mask):
# Image.composite(
def Poisson_blending(im1, im2, mask):
# mask=1-mask
mask *= 255
kernel = np.ones((10, 10), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
mask /= 255
mask = 1 - mask
mask *= 255
mask = mask[:, :, 0]
width, height, channels = im1.shape
center = (int(height / 2), int(width / 2))
result = cv2.seamlessClone(
im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.MIXED_CLONE
)
return result / 255.0
def Poisson_B(im1, im2, mask, center):
mask *= 255
result = cv2.seamlessClone(
im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.NORMAL_CLONE
)
return result / 255
def seamless_clone(old_face, new_face, raw_mask):
height, width, _ = old_face.shape
height = height // 2
width = width // 2
y_indices, x_indices, _ = np.nonzero(raw_mask)
y_crop = slice(np.min(y_indices), np.max(y_indices))
x_crop = slice(np.min(x_indices), np.max(x_indices))
y_center = int(np.rint((np.max(y_indices) + np.min(y_indices)) / 2 + height))
x_center = int(np.rint((np.max(x_indices) + np.min(x_indices)) / 2 + width))
insertion = np.rint(new_face[y_crop, x_crop] * 255.0).astype("uint8")
insertion_mask = np.rint(raw_mask[y_crop, x_crop] * 255.0).astype("uint8")
insertion_mask[insertion_mask != 0] = 255
prior = np.rint(np.pad(old_face * 255.0, ((height, height), (width, width), (0, 0)), "constant")).astype(
"uint8"
)
# if np.sum(insertion_mask) == 0:
n_mask = insertion_mask[1:-1, 1:-1, :]
n_mask = cv2.copyMakeBorder(n_mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
print(n_mask.shape)
x, y, w, h = cv2.boundingRect(n_mask[:, :, 0])
if w < 4 or h < 4:
blended = prior
else:
blended = cv2.seamlessClone(
insertion, # pylint: disable=no-member
prior,
insertion_mask,
(x_center, y_center),
cv2.NORMAL_CLONE,
) # pylint: disable=no-member
blended = blended[height:-height, width:-width]
return blended.astype("float32") / 255.0
def get_landmark(face_landmarks, id):
part = face_landmarks.part(id)
x = part.x
y = part.y
return (x, y)
def search(face_landmarks):
x1, y1 = get_landmark(face_landmarks, 36)
x2, y2 = get_landmark(face_landmarks, 39)
x3, y3 = get_landmark(face_landmarks, 42)
x4, y4 = get_landmark(face_landmarks, 45)
x_nose, y_nose = get_landmark(face_landmarks, 30)
x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48)
x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54)
x_left_eye = int((x1 + x2) / 2)
y_left_eye = int((y1 + y2) / 2)
x_right_eye = int((x3 + x4) / 2)
y_right_eye = int((y3 + y4) / 2)
results = np.array(
[
[x_left_eye, y_left_eye],
[x_right_eye, y_right_eye],
[x_nose, y_nose],
[x_left_mouth, y_left_mouth],
[x_right_mouth, y_right_mouth],
]
)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--origin_url", type=str, default="./", help="origin images")
parser.add_argument("--replace_url", type=str, default="./", help="restored faces")
parser.add_argument("--save_url", type=str, default="./save")
opts = parser.parse_args()
origin_url = opts.origin_url
replace_url = opts.replace_url
save_url = opts.save_url
if not os.path.exists(save_url):
os.makedirs(save_url)
face_detector = dlib.get_frontal_face_detector()
landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
count = 0
for x in os.listdir(origin_url):
img_url = os.path.join(origin_url, x)
pil_img = Image.open(img_url).convert("RGB")
origin_width, origin_height = pil_img.size
image = np.array(pil_img)
start = time.time()
faces = face_detector(image)
done = time.time()
if len(faces) == 0:
print("Warning: There is no face in %s" % (x))
continue
blended = image
for face_id in range(len(faces)):
current_face = faces[face_id]
face_landmarks = landmark_locator(image, current_face)
current_fl = search(face_landmarks)
forward_mask = np.ones_like(image).astype("uint8")
affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3)
aligned_face = warp(image, affine, output_shape=(256, 256, 3), preserve_range=True)
forward_mask = warp(
forward_mask, affine, output_shape=(256, 256, 3), order=0, preserve_range=True
)
affine_inverse = affine.inverse
cur_face = aligned_face
if replace_url != "":
face_name = x[:-4] + "_" + str(face_id + 1) + ".png"
cur_url = os.path.join(replace_url, face_name)
restored_face = Image.open(cur_url).convert("RGB")
restored_face = np.array(restored_face)
cur_face = restored_face
## Histogram Color matching
A = cv2.cvtColor(aligned_face.astype("uint8"), cv2.COLOR_RGB2BGR)
B = cv2.cvtColor(cur_face.astype("uint8"), cv2.COLOR_RGB2BGR)
B = match_histograms(B, A)
cur_face = cv2.cvtColor(B.astype("uint8"), cv2.COLOR_BGR2RGB)
warped_back = warp(
cur_face,
affine_inverse,
output_shape=(origin_height, origin_width, 3),
order=3,
preserve_range=True,
)
backward_mask = warp(
forward_mask,
affine_inverse,
output_shape=(origin_height, origin_width, 3),
order=0,
preserve_range=True,
) ## Nearest neighbour
blended = blur_blending_cv2(warped_back, blended, backward_mask)
blended *= 255.0
io.imsave(os.path.join(save_url, x), img_as_ubyte(blended / 255.0))
count += 1
if count % 1000 == 0:
print("%d have finished ..." % (count))
|