File size: 13,487 Bytes
7fab858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import torch
import numpy as np
import skimage.io as io

# from face_sdk import FaceDetection
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from skimage.transform import SimilarityTransform
from skimage.transform import warp
from PIL import Image, ImageFilter
import torch.nn.functional as F
import torchvision as tv
import torchvision.utils as vutils
import time
import cv2
import os
from skimage import img_as_ubyte
import json
import argparse
import dlib


def calculate_cdf(histogram):
    """
    This method calculates the cumulative distribution function
    :param array histogram: The values of the histogram
    :return: normalized_cdf: The normalized cumulative distribution function
    :rtype: array
    """
    # Get the cumulative sum of the elements
    cdf = histogram.cumsum()

    # Normalize the cdf
    normalized_cdf = cdf / float(cdf.max())

    return normalized_cdf


def calculate_lookup(src_cdf, ref_cdf):
    """
    This method creates the lookup table
    :param array src_cdf: The cdf for the source image
    :param array ref_cdf: The cdf for the reference image
    :return: lookup_table: The lookup table
    :rtype: array
    """
    lookup_table = np.zeros(256)
    lookup_val = 0
    for src_pixel_val in range(len(src_cdf)):
        lookup_val
        for ref_pixel_val in range(len(ref_cdf)):
            if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]:
                lookup_val = ref_pixel_val
                break
        lookup_table[src_pixel_val] = lookup_val
    return lookup_table


def match_histograms(src_image, ref_image):
    """
    This method matches the source image histogram to the
    reference signal
    :param image src_image: The original source image
    :param image  ref_image: The reference image
    :return: image_after_matching
    :rtype: image (array)
    """
    # Split the images into the different color channels
    # b means blue, g means green and r means red
    src_b, src_g, src_r = cv2.split(src_image)
    ref_b, ref_g, ref_r = cv2.split(ref_image)

    # Compute the b, g, and r histograms separately
    # The flatten() Numpy method returns a copy of the array c
    # collapsed into one dimension.
    src_hist_blue, bin_0 = np.histogram(src_b.flatten(), 256, [0, 256])
    src_hist_green, bin_1 = np.histogram(src_g.flatten(), 256, [0, 256])
    src_hist_red, bin_2 = np.histogram(src_r.flatten(), 256, [0, 256])
    ref_hist_blue, bin_3 = np.histogram(ref_b.flatten(), 256, [0, 256])
    ref_hist_green, bin_4 = np.histogram(ref_g.flatten(), 256, [0, 256])
    ref_hist_red, bin_5 = np.histogram(ref_r.flatten(), 256, [0, 256])

    # Compute the normalized cdf for the source and reference image
    src_cdf_blue = calculate_cdf(src_hist_blue)
    src_cdf_green = calculate_cdf(src_hist_green)
    src_cdf_red = calculate_cdf(src_hist_red)
    ref_cdf_blue = calculate_cdf(ref_hist_blue)
    ref_cdf_green = calculate_cdf(ref_hist_green)
    ref_cdf_red = calculate_cdf(ref_hist_red)

    # Make a separate lookup table for each color
    blue_lookup_table = calculate_lookup(src_cdf_blue, ref_cdf_blue)
    green_lookup_table = calculate_lookup(src_cdf_green, ref_cdf_green)
    red_lookup_table = calculate_lookup(src_cdf_red, ref_cdf_red)

    # Use the lookup function to transform the colors of the original
    # source image
    blue_after_transform = cv2.LUT(src_b, blue_lookup_table)
    green_after_transform = cv2.LUT(src_g, green_lookup_table)
    red_after_transform = cv2.LUT(src_r, red_lookup_table)

    # Put the image back together
    image_after_matching = cv2.merge([blue_after_transform, green_after_transform, red_after_transform])
    image_after_matching = cv2.convertScaleAbs(image_after_matching)

    return image_after_matching


def _standard_face_pts():
    pts = (
        np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0
        - 1.0
    )

    return np.reshape(pts, (5, 2))


def _origin_face_pts():
    pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32)

    return np.reshape(pts, (5, 2))


def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0):

    std_pts = _standard_face_pts()  # [-1,1]
    target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0

    # print(target_pts)

    h, w, c = img.shape
    if normalize == True:
        landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0
        landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0

    # print(landmark)

    affine = SimilarityTransform()

    affine.estimate(target_pts, landmark)

    return affine


def compute_inverse_transformation_matrix(img, landmark, normalize, target_face_scale=1.0):

    std_pts = _standard_face_pts()  # [-1,1]
    target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0

    # print(target_pts)

    h, w, c = img.shape
    if normalize == True:
        landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0
        landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0

    # print(landmark)

    affine = SimilarityTransform()

    affine.estimate(landmark, target_pts)

    return affine


def show_detection(image, box, landmark):
    plt.imshow(image)
    print(box[2] - box[0])
    plt.gca().add_patch(
        Rectangle(
            (box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none"
        )
    )
    plt.scatter(landmark[0][0], landmark[0][1])
    plt.scatter(landmark[1][0], landmark[1][1])
    plt.scatter(landmark[2][0], landmark[2][1])
    plt.scatter(landmark[3][0], landmark[3][1])
    plt.scatter(landmark[4][0], landmark[4][1])
    plt.show()


def affine2theta(affine, input_w, input_h, target_w, target_h):
    # param = np.linalg.inv(affine)
    param = affine
    theta = np.zeros([2, 3])
    theta[0, 0] = param[0, 0] * input_h / target_h
    theta[0, 1] = param[0, 1] * input_w / target_h
    theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1
    theta[1, 0] = param[1, 0] * input_h / target_w
    theta[1, 1] = param[1, 1] * input_w / target_w
    theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1
    return theta


def blur_blending(im1, im2, mask):

    mask *= 255.0

    kernel = np.ones((10, 10), np.uint8)
    mask = cv2.erode(mask, kernel, iterations=1)

    mask = Image.fromarray(mask.astype("uint8")).convert("L")
    im1 = Image.fromarray(im1.astype("uint8"))
    im2 = Image.fromarray(im2.astype("uint8"))

    mask_blur = mask.filter(ImageFilter.GaussianBlur(20))
    im = Image.composite(im1, im2, mask)

    im = Image.composite(im, im2, mask_blur)

    return np.array(im) / 255.0


def blur_blending_cv2(im1, im2, mask):

    mask *= 255.0

    kernel = np.ones((9, 9), np.uint8)
    mask = cv2.erode(mask, kernel, iterations=3)

    mask_blur = cv2.GaussianBlur(mask, (25, 25), 0)
    mask_blur /= 255.0

    im = im1 * mask_blur + (1 - mask_blur) * im2

    im /= 255.0
    im = np.clip(im, 0.0, 1.0)

    return im


# def Poisson_blending(im1,im2,mask):


#     Image.composite(
def Poisson_blending(im1, im2, mask):

    # mask=1-mask
    mask *= 255
    kernel = np.ones((10, 10), np.uint8)
    mask = cv2.erode(mask, kernel, iterations=1)
    mask /= 255
    mask = 1 - mask
    mask *= 255

    mask = mask[:, :, 0]
    width, height, channels = im1.shape
    center = (int(height / 2), int(width / 2))
    result = cv2.seamlessClone(
        im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.MIXED_CLONE
    )

    return result / 255.0


def Poisson_B(im1, im2, mask, center):

    mask *= 255

    result = cv2.seamlessClone(
        im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.NORMAL_CLONE
    )

    return result / 255


def seamless_clone(old_face, new_face, raw_mask):

    height, width, _ = old_face.shape
    height = height // 2
    width = width // 2

    y_indices, x_indices, _ = np.nonzero(raw_mask)
    y_crop = slice(np.min(y_indices), np.max(y_indices))
    x_crop = slice(np.min(x_indices), np.max(x_indices))
    y_center = int(np.rint((np.max(y_indices) + np.min(y_indices)) / 2 + height))
    x_center = int(np.rint((np.max(x_indices) + np.min(x_indices)) / 2 + width))

    insertion = np.rint(new_face[y_crop, x_crop] * 255.0).astype("uint8")
    insertion_mask = np.rint(raw_mask[y_crop, x_crop] * 255.0).astype("uint8")
    insertion_mask[insertion_mask != 0] = 255
    prior = np.rint(np.pad(old_face * 255.0, ((height, height), (width, width), (0, 0)), "constant")).astype(
        "uint8"
    )
    # if np.sum(insertion_mask) == 0:
    n_mask = insertion_mask[1:-1, 1:-1, :]
    n_mask = cv2.copyMakeBorder(n_mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0)
    print(n_mask.shape)
    x, y, w, h = cv2.boundingRect(n_mask[:, :, 0])
    if w < 4 or h < 4:
        blended = prior
    else:
        blended = cv2.seamlessClone(
            insertion,  # pylint: disable=no-member
            prior,
            insertion_mask,
            (x_center, y_center),
            cv2.NORMAL_CLONE,
        )  # pylint: disable=no-member

    blended = blended[height:-height, width:-width]

    return blended.astype("float32") / 255.0


def get_landmark(face_landmarks, id):
    part = face_landmarks.part(id)
    x = part.x
    y = part.y

    return (x, y)


def search(face_landmarks):

    x1, y1 = get_landmark(face_landmarks, 36)
    x2, y2 = get_landmark(face_landmarks, 39)
    x3, y3 = get_landmark(face_landmarks, 42)
    x4, y4 = get_landmark(face_landmarks, 45)

    x_nose, y_nose = get_landmark(face_landmarks, 30)

    x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48)
    x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54)

    x_left_eye = int((x1 + x2) / 2)
    y_left_eye = int((y1 + y2) / 2)
    x_right_eye = int((x3 + x4) / 2)
    y_right_eye = int((y3 + y4) / 2)

    results = np.array(
        [
            [x_left_eye, y_left_eye],
            [x_right_eye, y_right_eye],
            [x_nose, y_nose],
            [x_left_mouth, y_left_mouth],
            [x_right_mouth, y_right_mouth],
        ]
    )

    return results


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--origin_url", type=str, default="./", help="origin images")
    parser.add_argument("--replace_url", type=str, default="./", help="restored faces")
    parser.add_argument("--save_url", type=str, default="./save")
    opts = parser.parse_args()

    origin_url = opts.origin_url
    replace_url = opts.replace_url
    save_url = opts.save_url

    if not os.path.exists(save_url):
        os.makedirs(save_url)

    face_detector = dlib.get_frontal_face_detector()
    landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

    count = 0

    for x in os.listdir(origin_url):
        img_url = os.path.join(origin_url, x)
        pil_img = Image.open(img_url).convert("RGB")

        origin_width, origin_height = pil_img.size
        image = np.array(pil_img)

        start = time.time()
        faces = face_detector(image)
        done = time.time()

        if len(faces) == 0:
            print("Warning: There is no face in %s" % (x))
            continue

        blended = image
        for face_id in range(len(faces)):

            current_face = faces[face_id]
            face_landmarks = landmark_locator(image, current_face)
            current_fl = search(face_landmarks)

            forward_mask = np.ones_like(image).astype("uint8")
            affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3)
            aligned_face = warp(image, affine, output_shape=(256, 256, 3), preserve_range=True)
            forward_mask = warp(
                forward_mask, affine, output_shape=(256, 256, 3), order=0, preserve_range=True
            )

            affine_inverse = affine.inverse
            cur_face = aligned_face
            if replace_url != "":

                face_name = x[:-4] + "_" + str(face_id + 1) + ".png"
                cur_url = os.path.join(replace_url, face_name)
                restored_face = Image.open(cur_url).convert("RGB")
                restored_face = np.array(restored_face)
                cur_face = restored_face

            ## Histogram Color matching
            A = cv2.cvtColor(aligned_face.astype("uint8"), cv2.COLOR_RGB2BGR)
            B = cv2.cvtColor(cur_face.astype("uint8"), cv2.COLOR_RGB2BGR)
            B = match_histograms(B, A)
            cur_face = cv2.cvtColor(B.astype("uint8"), cv2.COLOR_BGR2RGB)

            warped_back = warp(
                cur_face,
                affine_inverse,
                output_shape=(origin_height, origin_width, 3),
                order=3,
                preserve_range=True,
            )

            backward_mask = warp(
                forward_mask,
                affine_inverse,
                output_shape=(origin_height, origin_width, 3),
                order=0,
                preserve_range=True,
            )  ## Nearest neighbour

            blended = blur_blending_cv2(warped_back, blended, backward_mask)
            blended *= 255.0

        io.imsave(os.path.join(save_url, x), img_as_ubyte(blended / 255.0))

        count += 1

        if count % 1000 == 0:
            print("%d have finished ..." % (count))