Spaces:
Runtime error
Runtime error
File size: 5,291 Bytes
7fab858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import numpy as np
import skimage.io as io
# from FaceSDK.face_sdk import FaceDetection
# from face_sdk import FaceDetection
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from skimage.transform import SimilarityTransform
from skimage.transform import warp
from PIL import Image
import torch.nn.functional as F
import torchvision as tv
import torchvision.utils as vutils
import time
import cv2
import os
from skimage import img_as_ubyte
import json
import argparse
import dlib
def _standard_face_pts():
pts = (
np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0
- 1.0
)
return np.reshape(pts, (5, 2))
def _origin_face_pts():
pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32)
return np.reshape(pts, (5, 2))
def get_landmark(face_landmarks, id):
part = face_landmarks.part(id)
x = part.x
y = part.y
return (x, y)
def search(face_landmarks):
x1, y1 = get_landmark(face_landmarks, 36)
x2, y2 = get_landmark(face_landmarks, 39)
x3, y3 = get_landmark(face_landmarks, 42)
x4, y4 = get_landmark(face_landmarks, 45)
x_nose, y_nose = get_landmark(face_landmarks, 30)
x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48)
x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54)
x_left_eye = int((x1 + x2) / 2)
y_left_eye = int((y1 + y2) / 2)
x_right_eye = int((x3 + x4) / 2)
y_right_eye = int((y3 + y4) / 2)
results = np.array(
[
[x_left_eye, y_left_eye],
[x_right_eye, y_right_eye],
[x_nose, y_nose],
[x_left_mouth, y_left_mouth],
[x_right_mouth, y_right_mouth],
]
)
return results
def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0):
std_pts = _standard_face_pts() # [-1,1]
target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0
# print(target_pts)
h, w, c = img.shape
if normalize == True:
landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0
landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0
# print(landmark)
affine = SimilarityTransform()
affine.estimate(target_pts, landmark)
return affine.params
def show_detection(image, box, landmark):
plt.imshow(image)
print(box[2] - box[0])
plt.gca().add_patch(
Rectangle(
(box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none"
)
)
plt.scatter(landmark[0][0], landmark[0][1])
plt.scatter(landmark[1][0], landmark[1][1])
plt.scatter(landmark[2][0], landmark[2][1])
plt.scatter(landmark[3][0], landmark[3][1])
plt.scatter(landmark[4][0], landmark[4][1])
plt.show()
def affine2theta(affine, input_w, input_h, target_w, target_h):
# param = np.linalg.inv(affine)
param = affine
theta = np.zeros([2, 3])
theta[0, 0] = param[0, 0] * input_h / target_h
theta[0, 1] = param[0, 1] * input_w / target_h
theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1
theta[1, 0] = param[1, 0] * input_h / target_w
theta[1, 1] = param[1, 1] * input_w / target_w
theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1
return theta
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--url", type=str, default="/home/jingliao/ziyuwan/celebrities", help="input")
parser.add_argument(
"--save_url", type=str, default="/home/jingliao/ziyuwan/celebrities_detected_face_reid", help="output"
)
opts = parser.parse_args()
url = opts.url
save_url = opts.save_url
### If the origin url is None, then we don't need to reid the origin image
os.makedirs(url, exist_ok=True)
os.makedirs(save_url, exist_ok=True)
face_detector = dlib.get_frontal_face_detector()
landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
count = 0
map_id = {}
for x in os.listdir(url):
img_url = os.path.join(url, x)
pil_img = Image.open(img_url).convert("RGB")
image = np.array(pil_img)
start = time.time()
faces = face_detector(image)
done = time.time()
if len(faces) == 0:
print("Warning: There is no face in %s" % (x))
continue
print(len(faces))
if len(faces) > 0:
for face_id in range(len(faces)):
current_face = faces[face_id]
face_landmarks = landmark_locator(image, current_face)
current_fl = search(face_landmarks)
affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3)
aligned_face = warp(image, affine, output_shape=(256, 256, 3))
img_name = x[:-4] + "_" + str(face_id + 1)
io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face))
count += 1
if count % 1000 == 0:
print("%d have finished ..." % (count))
|