File size: 5,291 Bytes
7fab858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import torch
import numpy as np
import skimage.io as io

# from FaceSDK.face_sdk import FaceDetection
# from face_sdk import FaceDetection
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from skimage.transform import SimilarityTransform
from skimage.transform import warp
from PIL import Image
import torch.nn.functional as F
import torchvision as tv
import torchvision.utils as vutils
import time
import cv2
import os
from skimage import img_as_ubyte
import json
import argparse
import dlib


def _standard_face_pts():
    pts = (
        np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0
        - 1.0
    )

    return np.reshape(pts, (5, 2))


def _origin_face_pts():
    pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32)

    return np.reshape(pts, (5, 2))


def get_landmark(face_landmarks, id):
    part = face_landmarks.part(id)
    x = part.x
    y = part.y

    return (x, y)


def search(face_landmarks):

    x1, y1 = get_landmark(face_landmarks, 36)
    x2, y2 = get_landmark(face_landmarks, 39)
    x3, y3 = get_landmark(face_landmarks, 42)
    x4, y4 = get_landmark(face_landmarks, 45)

    x_nose, y_nose = get_landmark(face_landmarks, 30)

    x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48)
    x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54)

    x_left_eye = int((x1 + x2) / 2)
    y_left_eye = int((y1 + y2) / 2)
    x_right_eye = int((x3 + x4) / 2)
    y_right_eye = int((y3 + y4) / 2)

    results = np.array(
        [
            [x_left_eye, y_left_eye],
            [x_right_eye, y_right_eye],
            [x_nose, y_nose],
            [x_left_mouth, y_left_mouth],
            [x_right_mouth, y_right_mouth],
        ]
    )

    return results


def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0):

    std_pts = _standard_face_pts()  # [-1,1]
    target_pts = (std_pts * target_face_scale + 1) / 2 * 256.0

    # print(target_pts)

    h, w, c = img.shape
    if normalize == True:
        landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0
        landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0

    # print(landmark)

    affine = SimilarityTransform()

    affine.estimate(target_pts, landmark)

    return affine.params


def show_detection(image, box, landmark):
    plt.imshow(image)
    print(box[2] - box[0])
    plt.gca().add_patch(
        Rectangle(
            (box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none"
        )
    )
    plt.scatter(landmark[0][0], landmark[0][1])
    plt.scatter(landmark[1][0], landmark[1][1])
    plt.scatter(landmark[2][0], landmark[2][1])
    plt.scatter(landmark[3][0], landmark[3][1])
    plt.scatter(landmark[4][0], landmark[4][1])
    plt.show()


def affine2theta(affine, input_w, input_h, target_w, target_h):
    # param = np.linalg.inv(affine)
    param = affine
    theta = np.zeros([2, 3])
    theta[0, 0] = param[0, 0] * input_h / target_h
    theta[0, 1] = param[0, 1] * input_w / target_h
    theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1
    theta[1, 0] = param[1, 0] * input_h / target_w
    theta[1, 1] = param[1, 1] * input_w / target_w
    theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1
    return theta


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--url", type=str, default="/home/jingliao/ziyuwan/celebrities", help="input")
    parser.add_argument(
        "--save_url", type=str, default="/home/jingliao/ziyuwan/celebrities_detected_face_reid", help="output"
    )
    opts = parser.parse_args()

    url = opts.url
    save_url = opts.save_url

    ### If the origin url is None, then we don't need to reid the origin image

    os.makedirs(url, exist_ok=True)
    os.makedirs(save_url, exist_ok=True)

    face_detector = dlib.get_frontal_face_detector()
    landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

    count = 0

    map_id = {}
    for x in os.listdir(url):
        img_url = os.path.join(url, x)
        pil_img = Image.open(img_url).convert("RGB")

        image = np.array(pil_img)

        start = time.time()
        faces = face_detector(image)
        done = time.time()

        if len(faces) == 0:
            print("Warning: There is no face in %s" % (x))
            continue

        print(len(faces))

        if len(faces) > 0:
            for face_id in range(len(faces)):
                current_face = faces[face_id]
                face_landmarks = landmark_locator(image, current_face)
                current_fl = search(face_landmarks)

                affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3)
                aligned_face = warp(image, affine, output_shape=(256, 256, 3))
                img_name = x[:-4] + "_" + str(face_id + 1)
                io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face))

        count += 1

        if count % 1000 == 0:
            print("%d have finished ..." % (count))