BOPBTL / Global /train_mapping.py
manhkhanhUIT's picture
Add code
7fab858
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import time
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.mapping_model import Pix2PixHDModel_Mapping
import util.util as util
from util.visualizer import Visualizer
import os
import numpy as np
import torch
import torchvision.utils as vutils
from torch.autograd import Variable
import datetime
import random
opt = TrainOptions().parse()
visualizer = Visualizer(opt)
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
visualizer.print_save('Resuming from epoch %d at iteration %d' % (start_epoch-1, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
if opt.which_epoch != "latest":
start_epoch=int(opt.which_epoch)
visualizer.print_save('Notice : Resuming from epoch %d at iteration %d' % (start_epoch - 1, epoch_iter))
opt.start_epoch=start_epoch
### temp for continue train unfixed decoder
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(dataset) * opt.batchSize
print('#training images = %d' % dataset_size)
model = Pix2PixHDModel_Mapping()
model.initialize(opt)
path = os.path.join(opt.checkpoints_dir, opt.name, 'model.txt')
fd = open(path, 'w')
if opt.use_skip_model:
fd.write(str(model.mapping_net))
fd.close()
else:
fd.write(str(model.netG_A))
fd.write(str(model.mapping_net))
fd.close()
if opt.isTrain and len(opt.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
total_steps = (start_epoch-1) * dataset_size + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
### used for recovering training
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_s_t=datetime.datetime.now()
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, data in enumerate(dataset, start=epoch_iter):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
#print(pair)
losses, generated = model(Variable(data['label']), Variable(data['inst']),
Variable(data['image']), Variable(data['feat']), infer=save_fake)
# sum per device losses
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) + loss_dict.get('G_Feat_L2', 0) +loss_dict.get('Smooth_L1', 0)+loss_dict.get('G_Feat_L2_Stage_1',0)
#loss_G = loss_dict['G_Feat_L2']
############### Backward Pass ####################
# update generator weights
model.module.optimizer_mapping.zero_grad()
loss_G.backward()
model.module.optimizer_mapping.step()
# update discriminator weights
model.module.optimizer_D.zero_grad()
loss_D.backward()
model.module.optimizer_D.step()
############## Display results and errors ##########
### print out errors
if i == 0 or total_steps % opt.print_freq == print_delta:
errors = {k: v.data if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t,model.module.old_lr)
visualizer.plot_current_errors(errors, total_steps)
### display output images
if save_fake:
if not os.path.exists(opt.outputs_dir + opt.name):
os.makedirs(opt.outputs_dir + opt.name)
imgs_num = 5
if opt.NL_use_mask:
mask=data['inst'][:imgs_num]
mask=mask.repeat(1,3,1,1)
imgs = torch.cat((data['label'][:imgs_num], mask,generated.data.cpu()[:imgs_num], data['image'][:imgs_num]), 0)
else:
imgs = torch.cat((data['label'][:imgs_num], generated.data.cpu()[:imgs_num], data['image'][:imgs_num]), 0)
imgs=(imgs+1.)/2.0 ## de-normalize
try:
image_grid = vutils.save_image(imgs, opt.outputs_dir + opt.name + '/' + str(epoch) + '_' + str(total_steps) + '.png',
nrow=imgs_num, padding=0, normalize=True)
except OSError as err:
print(err)
if epoch_iter >= dataset_size:
break
# end of epoch
epoch_e_t=datetime.datetime.now()
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %s' %
(epoch, opt.niter + opt.niter_decay, str(epoch_e_t-epoch_s_t)))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.module.save('latest')
model.module.save(epoch)
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
### instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
model.module.update_fixed_params()
### linearly decay learning rate after certain iterations
if epoch > opt.niter:
model.module.update_learning_rate()