Upload 18 files
Browse files- .gitattributes +6 -0
- Dataset/Rossmann Stores Data.csv +3 -0
- Dataset/Rossmann_Cleaned_data.csv +3 -0
- Dataset/store.csv +1116 -0
- Notebooks/01 copy.ipynb +3 -0
- Notebooks/01.ipynb +3 -0
- Notebooks/SalesPrediction_EDA.ipynb +0 -0
- Notebooks/SalesPrediction_ML.ipynb +3 -0
- Notebooks/pipeline.ipynb +1924 -0
- Requirements.txt +1 -0
- app.py +100 -0
- images/mg.png +0 -0
- images/r1.jpg +0 -0
- images/r1.png +0 -0
- images/r2.png +3 -0
- models/Rossmann_Model.pkl +3 -0
- models/model1.pkl +3 -0
- pages/Data Overview.py +16 -0
- pages/app.py +100 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Dataset/Rossmann[[:space:]]Stores[[:space:]]Data.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Dataset/Rossmann_Cleaned_data.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
+
images/r2.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Notebooks/01[[:space:]]copy.ipynb filter=lfs diff=lfs merge=lfs -text
|
40 |
+
Notebooks/01.ipynb filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Notebooks/SalesPrediction_ML.ipynb filter=lfs diff=lfs merge=lfs -text
|
Dataset/Rossmann Stores Data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6e4597c142d7d909a13d53b68a8e85c00b9a4c7b5ff40adbb37d6829cc1f4cc
|
3 |
+
size 38057952
|
Dataset/Rossmann_Cleaned_data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7a26593831058de426161c0ee7e36cc3ee148b857930bd4111d8d10c6fbd93e
|
3 |
+
size 75241817
|
Dataset/store.csv
ADDED
@@ -0,0 +1,1116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"Store","StoreType","Assortment","CompetitionDistance","CompetitionOpenSinceMonth","CompetitionOpenSinceYear","Promo2","Promo2SinceWeek","Promo2SinceYear","PromoInterval"
|
2 |
+
1,"c","a",1270,9,2008,0,,,""
|
3 |
+
2,"a","a",570,11,2007,1,13,2010,"Jan,Apr,Jul,Oct"
|
4 |
+
3,"a","a",14130,12,2006,1,14,2011,"Jan,Apr,Jul,Oct"
|
5 |
+
4,"c","c",620,9,2009,0,,,""
|
6 |
+
5,"a","a",29910,4,2015,0,,,""
|
7 |
+
6,"a","a",310,12,2013,0,,,""
|
8 |
+
7,"a","c",24000,4,2013,0,,,""
|
9 |
+
8,"a","a",7520,10,2014,0,,,""
|
10 |
+
9,"a","c",2030,8,2000,0,,,""
|
11 |
+
10,"a","a",3160,9,2009,0,,,""
|
12 |
+
11,"a","c",960,11,2011,1,1,2012,"Jan,Apr,Jul,Oct"
|
13 |
+
12,"a","c",1070,,,1,13,2010,"Jan,Apr,Jul,Oct"
|
14 |
+
13,"d","a",310,,,1,45,2009,"Feb,May,Aug,Nov"
|
15 |
+
14,"a","a",1300,3,2014,1,40,2011,"Jan,Apr,Jul,Oct"
|
16 |
+
15,"d","c",4110,3,2010,1,14,2011,"Jan,Apr,Jul,Oct"
|
17 |
+
16,"a","c",3270,,,0,,,""
|
18 |
+
17,"a","a",50,12,2005,1,26,2010,"Jan,Apr,Jul,Oct"
|
19 |
+
18,"d","c",13840,6,2010,1,14,2012,"Jan,Apr,Jul,Oct"
|
20 |
+
19,"a","c",3240,,,1,22,2011,"Mar,Jun,Sept,Dec"
|
21 |
+
20,"d","a",2340,5,2009,1,40,2014,"Jan,Apr,Jul,Oct"
|
22 |
+
21,"c","c",550,10,1999,1,45,2009,"Jan,Apr,Jul,Oct"
|
23 |
+
22,"a","a",1040,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
24 |
+
23,"d","a",4060,8,2005,0,,,""
|
25 |
+
24,"a","c",4590,3,2000,1,40,2011,"Jan,Apr,Jul,Oct"
|
26 |
+
25,"c","a",430,4,2003,0,,,""
|
27 |
+
26,"d","a",2300,,,0,,,""
|
28 |
+
27,"a","a",60,1,2005,1,5,2011,"Jan,Apr,Jul,Oct"
|
29 |
+
28,"a","a",1200,10,2014,1,6,2015,"Mar,Jun,Sept,Dec"
|
30 |
+
29,"d","c",2170,,,0,,,""
|
31 |
+
30,"a","a",40,2,2014,1,10,2014,"Mar,Jun,Sept,Dec"
|
32 |
+
31,"d","c",9800,7,2012,0,,,""
|
33 |
+
32,"a","a",2910,,,1,45,2009,"Feb,May,Aug,Nov"
|
34 |
+
33,"a","c",1320,5,2013,0,,,""
|
35 |
+
34,"c","a",2240,9,2009,0,,,""
|
36 |
+
35,"d","c",7660,10,2000,1,1,2012,"Jan,Apr,Jul,Oct"
|
37 |
+
36,"a","c",540,6,2003,1,40,2014,"Jan,Apr,Jul,Oct"
|
38 |
+
37,"c","a",4230,12,2014,0,,,""
|
39 |
+
38,"d","a",1090,4,2007,0,,,""
|
40 |
+
39,"a","a",260,10,2006,1,31,2013,"Feb,May,Aug,Nov"
|
41 |
+
40,"a","a",180,,,1,45,2009,"Feb,May,Aug,Nov"
|
42 |
+
41,"d","c",1180,,,1,31,2013,"Jan,Apr,Jul,Oct"
|
43 |
+
42,"a","c",290,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
44 |
+
43,"d","a",4880,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
45 |
+
44,"a","a",540,6,2011,0,,,""
|
46 |
+
45,"d","a",9710,2,2014,0,,,""
|
47 |
+
46,"c","a",1200,9,2005,1,14,2011,"Jan,Apr,Jul,Oct"
|
48 |
+
47,"a","c",270,4,2013,1,14,2013,"Jan,Apr,Jul,Oct"
|
49 |
+
48,"a","a",1060,5,2012,0,,,""
|
50 |
+
49,"d","c",18010,9,2007,0,,,""
|
51 |
+
50,"d","a",6260,11,2009,0,,,""
|
52 |
+
51,"a","c",10570,7,2013,1,9,2011,"Jan,Apr,Jul,Oct"
|
53 |
+
52,"d","c",450,4,2014,1,39,2010,"Jan,Apr,Jul,Oct"
|
54 |
+
53,"a","c",30360,9,2013,0,,,""
|
55 |
+
54,"d","c",7170,8,2014,1,5,2013,"Feb,May,Aug,Nov"
|
56 |
+
55,"a","a",720,11,2004,0,,,""
|
57 |
+
56,"d","c",6620,3,2012,1,10,2014,"Mar,Jun,Sept,Dec"
|
58 |
+
57,"d","c",420,6,2014,0,,,""
|
59 |
+
58,"a","c",7340,5,2008,1,27,2012,"Jan,Apr,Jul,Oct"
|
60 |
+
59,"a","c",2840,6,2007,1,14,2011,"Jan,Apr,Jul,Oct"
|
61 |
+
60,"d","c",5540,10,2009,0,,,""
|
62 |
+
61,"a","c",350,12,2007,1,1,2012,"Jan,Apr,Jul,Oct"
|
63 |
+
62,"a","a",2050,,,0,,,""
|
64 |
+
63,"c","c",3700,6,2010,1,18,2010,"Feb,May,Aug,Nov"
|
65 |
+
64,"d","c",22560,,,1,14,2013,"Jan,Apr,Jul,Oct"
|
66 |
+
65,"a","c",13840,5,2010,1,1,2012,"Jan,Apr,Jul,Oct"
|
67 |
+
66,"d","a",7660,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
68 |
+
67,"a","c",410,2,2006,0,,,""
|
69 |
+
68,"a","c",250,,,1,35,2012,"Mar,Jun,Sept,Dec"
|
70 |
+
69,"c","c",1130,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
71 |
+
70,"c","c",4840,,,0,,,""
|
72 |
+
71,"a","a",17500,8,2008,1,37,2009,"Mar,Jun,Sept,Dec"
|
73 |
+
72,"a","a",2200,12,2009,1,13,2010,"Jan,Apr,Jul,Oct"
|
74 |
+
73,"a","c",1650,9,2008,0,,,""
|
75 |
+
74,"a","a",330,,,0,,,""
|
76 |
+
75,"d","c",22440,12,2013,0,,,""
|
77 |
+
76,"d","c",19960,3,2006,0,,,""
|
78 |
+
77,"d","c",1090,8,2009,1,10,2014,"Jan,Apr,Jul,Oct"
|
79 |
+
78,"a","a",3510,11,2006,1,5,2013,"Feb,May,Aug,Nov"
|
80 |
+
79,"a","a",3320,,,0,,,""
|
81 |
+
80,"d","a",7910,,,0,,,""
|
82 |
+
81,"a","a",2370,3,2011,1,40,2014,"Jan,Apr,Jul,Oct"
|
83 |
+
82,"a","a",22390,4,2008,1,37,2009,"Jan,Apr,Jul,Oct"
|
84 |
+
83,"a","a",2710,,,0,,,""
|
85 |
+
84,"a","c",11810,8,2014,0,,,""
|
86 |
+
85,"b","a",1870,10,2011,0,,,""
|
87 |
+
86,"a","a",480,2,2005,1,31,2013,"Jan,Apr,Jul,Oct"
|
88 |
+
87,"a","a",560,12,2010,0,,,""
|
89 |
+
88,"a","a",10690,10,2005,0,,,""
|
90 |
+
89,"a","a",2380,7,2004,1,40,2014,"Jan,Apr,Jul,Oct"
|
91 |
+
90,"a","a",330,11,2007,0,,,""
|
92 |
+
91,"c","a",2410,,,1,35,2011,"Jan,Apr,Jul,Oct"
|
93 |
+
92,"c","a",240,,,1,45,2009,"Feb,May,Aug,Nov"
|
94 |
+
93,"a","a",16690,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
95 |
+
94,"d","c",14620,,,0,,,""
|
96 |
+
95,"a","a",1890,10,2014,0,,,""
|
97 |
+
96,"a","a",8780,2,2005,1,37,2009,"Jan,Apr,Jul,Oct"
|
98 |
+
97,"d","c",8980,,,0,,,""
|
99 |
+
98,"d","c",15140,12,2006,1,1,2012,"Jan,Apr,Jul,Oct"
|
100 |
+
99,"c","c",2030,11,2003,1,22,2012,"Mar,Jun,Sept,Dec"
|
101 |
+
100,"d","a",17930,,,0,,,""
|
102 |
+
101,"d","c",2440,,,1,22,2012,"Mar,Jun,Sept,Dec"
|
103 |
+
102,"a","a",150,12,2007,1,10,2014,"Mar,Jun,Sept,Dec"
|
104 |
+
103,"d","c",5210,5,2015,0,,,""
|
105 |
+
104,"a","a",390,6,2009,0,,,""
|
106 |
+
105,"a","c",6190,,,1,23,2013,"Mar,Jun,Sept,Dec"
|
107 |
+
106,"a","a",1390,8,2013,0,,,""
|
108 |
+
107,"a","a",1930,9,2009,0,,,""
|
109 |
+
108,"d","c",2190,9,2003,0,,,""
|
110 |
+
109,"a","c",3300,11,2010,0,,,""
|
111 |
+
110,"a","c",46590,4,2013,0,,,""
|
112 |
+
111,"d","c",7890,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
113 |
+
112,"a","a",1630,9,2009,0,,,""
|
114 |
+
113,"d","c",20930,11,1999,0,,,""
|
115 |
+
114,"c","a",4510,,,1,48,2011,"Mar,Jun,Sept,Dec"
|
116 |
+
115,"d","c",5740,4,2007,1,40,2014,"Jan,Apr,Jul,Oct"
|
117 |
+
116,"a","a",680,4,2013,0,,,""
|
118 |
+
117,"a","a",3450,9,2011,0,,,""
|
119 |
+
118,"d","c",3580,9,2012,0,,,""
|
120 |
+
119,"a","c",2100,2,2010,0,,,""
|
121 |
+
120,"d","a",2290,12,2014,1,37,2009,"Jan,Apr,Jul,Oct"
|
122 |
+
121,"a","a",3570,11,2009,1,36,2013,"Mar,Jun,Sept,Dec"
|
123 |
+
122,"a","c",58260,4,2013,0,,,""
|
124 |
+
123,"a","a",16760,9,2011,0,,,""
|
125 |
+
124,"a","a",1410,4,2003,0,,,""
|
126 |
+
125,"a","a",760,12,2005,0,,,""
|
127 |
+
126,"d","a",3370,10,2014,1,18,2011,"Feb,May,Aug,Nov"
|
128 |
+
127,"d","a",1350,12,2005,1,13,2010,"Jan,Apr,Jul,Oct"
|
129 |
+
128,"d","c",2000,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
130 |
+
129,"a","a",2460,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
131 |
+
130,"c","a",900,,,1,13,2010,"Jan,Apr,Jul,Oct"
|
132 |
+
131,"c","a",920,7,2015,0,,,""
|
133 |
+
132,"d","c",1040,,,1,27,2012,"Jan,Apr,Jul,Oct"
|
134 |
+
133,"a","a",270,8,2013,1,10,2014,"Mar,Jun,Sept,Dec"
|
135 |
+
134,"a","a",1200,9,2008,0,,,""
|
136 |
+
135,"d","a",5190,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
137 |
+
136,"a","c",2200,12,2010,1,22,2012,"Feb,May,Aug,Nov"
|
138 |
+
137,"a","a",1730,7,2015,1,40,2014,"Jan,Apr,Jul,Oct"
|
139 |
+
138,"a","c",25360,10,2014,0,,,""
|
140 |
+
139,"a","a",1700,1,2008,1,14,2011,"Jan,Apr,Jul,Oct"
|
141 |
+
140,"a","c",1090,7,2010,1,1,2013,"Jan,Apr,Jul,Oct"
|
142 |
+
141,"c","c",1540,,,1,22,2012,"Mar,Jun,Sept,Dec"
|
143 |
+
142,"a","a",1090,7,2002,0,,,""
|
144 |
+
143,"d","a",2930,12,2002,0,,,""
|
145 |
+
144,"a","c",16570,,,0,,,""
|
146 |
+
145,"a","a",280,,,1,45,2009,"Feb,May,Aug,Nov"
|
147 |
+
146,"d","c",8050,10,1961,1,48,2012,"Jan,Apr,Jul,Oct"
|
148 |
+
147,"d","c",8540,,,0,,,""
|
149 |
+
148,"a","a",2090,12,2008,0,,,""
|
150 |
+
149,"d","a",2610,7,2006,1,14,2011,"Jan,Apr,Jul,Oct"
|
151 |
+
150,"c","c",31830,3,2010,0,,,""
|
152 |
+
151,"d","c",4360,10,2005,0,,,""
|
153 |
+
152,"a","a",1780,,,0,,,""
|
154 |
+
153,"a","a",16240,10,2000,1,18,2011,"Feb,May,Aug,Nov"
|
155 |
+
154,"d","c",16420,,,0,,,""
|
156 |
+
155,"d","a",3050,,,1,35,2010,"Jan,Apr,Jul,Oct"
|
157 |
+
156,"a","a",2020,2,2011,1,14,2011,"Mar,Jun,Sept,Dec"
|
158 |
+
157,"a","c",2950,10,2004,0,,,""
|
159 |
+
158,"d","c",11840,,,1,31,2009,"Feb,May,Aug,Nov"
|
160 |
+
159,"d","a",8530,3,2013,0,,,""
|
161 |
+
160,"d","c",17110,11,2005,0,,,""
|
162 |
+
161,"a","c",2970,3,2005,0,,,""
|
163 |
+
162,"d","c",5340,3,2012,1,13,2010,"Jan,Apr,Jul,Oct"
|
164 |
+
163,"a","a",1480,4,2009,0,,,""
|
165 |
+
164,"a","a",1160,9,2005,1,13,2010,"Jan,Apr,Jul,Oct"
|
166 |
+
165,"a","a",3720,4,2005,1,13,2010,"Jan,Apr,Jul,Oct"
|
167 |
+
166,"a","c",100,4,2014,1,31,2013,"Jan,Apr,Jul,Oct"
|
168 |
+
167,"a","a",140,4,2008,0,,,""
|
169 |
+
168,"a","a",12540,,,0,,,""
|
170 |
+
169,"d","a",980,7,2014,1,18,2014,"Feb,May,Aug,Nov"
|
171 |
+
170,"a","a",1070,5,2015,1,14,2011,"Jan,Apr,Jul,Oct"
|
172 |
+
171,"a","a",2640,,,0,,,""
|
173 |
+
172,"a","a",110,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
174 |
+
173,"a","a",350,12,2012,0,,,""
|
175 |
+
174,"a","a",13090,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
176 |
+
175,"c","a",4130,,,0,,,""
|
177 |
+
176,"a","a",3770,,,0,,,""
|
178 |
+
177,"a","a",1250,2,2004,1,5,2013,"Feb,May,Aug,Nov"
|
179 |
+
178,"d","a",1710,,,0,,,""
|
180 |
+
179,"a","c",480,,,0,,,""
|
181 |
+
180,"d","a",5800,9,2010,0,,,""
|
182 |
+
181,"a","a",12610,3,2013,1,14,2011,"Jan,Apr,Jul,Oct"
|
183 |
+
182,"d","c",1390,,,1,9,2011,"Mar,Jun,Sept,Dec"
|
184 |
+
183,"a","a",9670,,,0,,,""
|
185 |
+
184,"d","c",3560,,,0,,,""
|
186 |
+
185,"d","c",1860,5,2015,0,,,""
|
187 |
+
186,"a","a",290,10,2011,1,40,2014,"Jan,Apr,Jul,Oct"
|
188 |
+
187,"a","c",19360,,,0,,,""
|
189 |
+
188,"d","a",850,,,1,18,2011,"Feb,May,Aug,Nov"
|
190 |
+
189,"d","a",5760,7,2014,0,,,""
|
191 |
+
190,"a","a",1470,12,2006,1,40,2014,"Jan,Apr,Jul,Oct"
|
192 |
+
191,"a","a",1100,8,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
193 |
+
192,"d","c",2770,3,2008,1,40,2014,"Jan,Apr,Jul,Oct"
|
194 |
+
193,"a","a",520,,,0,,,""
|
195 |
+
194,"d","c",16970,,,1,5,2013,"Feb,May,Aug,Nov"
|
196 |
+
195,"a","c",220,,,0,,,""
|
197 |
+
196,"c","a",3850,11,2005,1,14,2011,"Jan,Apr,Jul,Oct"
|
198 |
+
197,"c","a",4210,3,2015,0,,,""
|
199 |
+
198,"a","a",290,9,2002,1,13,2010,"Jan,Apr,Jul,Oct"
|
200 |
+
199,"d","c",6360,12,2010,1,14,2012,"Mar,Jun,Sept,Dec"
|
201 |
+
200,"a","a",1650,10,2000,0,,,""
|
202 |
+
201,"d","a",20260,,,1,18,2014,"Mar,Jun,Sept,Dec"
|
203 |
+
202,"d","c",5140,5,2010,0,,,""
|
204 |
+
203,"c","c",490,11,2002,0,,,""
|
205 |
+
204,"a","a",5630,12,2002,1,40,2014,"Jan,Apr,Jul,Oct"
|
206 |
+
205,"a","a",110,12,2007,0,,,""
|
207 |
+
206,"a","c",380,,,1,14,2012,"Jan,Apr,Jul,Oct"
|
208 |
+
207,"a","a",6870,,,0,,,""
|
209 |
+
208,"c","a",300,4,2006,0,,,""
|
210 |
+
209,"a","c",11680,9,2011,1,31,2013,"Jan,Apr,Jul,Oct"
|
211 |
+
210,"d","a",970,11,1999,1,5,2013,"Feb,May,Aug,Nov"
|
212 |
+
211,"a","c",350,11,2006,0,,,""
|
213 |
+
212,"a","c",15050,9,2008,0,,,""
|
214 |
+
213,"d","c",4030,3,2014,1,1,2014,"Jan,Apr,Jul,Oct"
|
215 |
+
214,"d","a",8650,7,2013,1,10,2014,"Jan,Apr,Jul,Oct"
|
216 |
+
215,"d","a",150,,,1,45,2009,"Feb,May,Aug,Nov"
|
217 |
+
216,"c","a",190,,,1,45,2009,"Feb,May,Aug,Nov"
|
218 |
+
217,"c","a",3150,,,0,,,""
|
219 |
+
218,"a","c",640,,,1,9,2011,"Mar,Jun,Sept,Dec"
|
220 |
+
219,"a","a",1640,2,2013,0,,,""
|
221 |
+
220,"a","a",1000,9,2008,0,,,""
|
222 |
+
221,"d","c",13530,9,2013,0,,,""
|
223 |
+
222,"a","a",2170,11,2008,0,,,""
|
224 |
+
223,"d","c",2920,10,1995,1,27,2011,"Jan,Apr,Jul,Oct"
|
225 |
+
224,"d","c",7930,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
226 |
+
225,"d","a",10180,5,2015,0,,,""
|
227 |
+
226,"a","a",450,,,0,,,""
|
228 |
+
227,"a","a",2370,,,0,,,""
|
229 |
+
228,"d","c",10800,,,1,18,2011,"Feb,May,Aug,Nov"
|
230 |
+
229,"d","c",17410,4,2007,1,14,2011,"Jan,Apr,Jul,Oct"
|
231 |
+
230,"d","c",6680,9,2013,0,,,""
|
232 |
+
231,"d","c",3840,10,2008,1,39,2010,"Feb,May,Aug,Nov"
|
233 |
+
232,"c","c",13570,5,2010,1,10,2013,"Mar,Jun,Sept,Dec"
|
234 |
+
233,"a","a",1890,,,0,,,""
|
235 |
+
234,"d","a",4370,,,0,,,""
|
236 |
+
235,"a","a",5710,3,2012,1,37,2009,"Jan,Apr,Jul,Oct"
|
237 |
+
236,"a","a",1000,11,2007,0,,,""
|
238 |
+
237,"a","a",1420,11,2007,0,,,""
|
239 |
+
238,"a","a",320,,,1,45,2009,"Feb,May,Aug,Nov"
|
240 |
+
239,"d","c",610,,,0,,,""
|
241 |
+
240,"a","a",1110,5,2009,0,,,""
|
242 |
+
241,"d","c",780,,,0,,,""
|
243 |
+
242,"d","a",6880,9,2001,1,14,2011,"Jan,Apr,Jul,Oct"
|
244 |
+
243,"a","a",310,,,1,5,2013,"Feb,May,Aug,Nov"
|
245 |
+
244,"d","a",710,3,2012,1,1,2012,"Jan,Apr,Jul,Oct"
|
246 |
+
245,"a","c",1310,,,0,,,""
|
247 |
+
246,"c","a",4660,4,2013,0,,,""
|
248 |
+
247,"d","c",70,11,2010,1,5,2013,"Feb,May,Aug,Nov"
|
249 |
+
248,"a","c",340,9,2012,1,40,2012,"Jan,Apr,Jul,Oct"
|
250 |
+
249,"d","c",18010,9,2014,0,,,""
|
251 |
+
250,"d","a",3520,,,1,18,2012,"Feb,May,Aug,Nov"
|
252 |
+
251,"a","c",340,,,0,,,""
|
253 |
+
252,"d","c",22330,,,1,5,2010,"Feb,May,Aug,Nov"
|
254 |
+
253,"a","c",250,,,1,5,2013,"Feb,May,Aug,Nov"
|
255 |
+
254,"d","a",330,3,2008,1,1,2012,"Mar,Jun,Sept,Dec"
|
256 |
+
255,"c","c",4630,3,2011,1,35,2011,"Feb,May,Aug,Nov"
|
257 |
+
256,"a","c",80,9,2005,1,10,2014,"Mar,Jun,Sept,Dec"
|
258 |
+
257,"a","a",420,12,2012,0,,,""
|
259 |
+
258,"a","a",27190,7,2010,1,37,2009,"Jan,Apr,Jul,Oct"
|
260 |
+
259,"b","b",210,,,0,,,""
|
261 |
+
260,"a","a",540,10,2011,0,,,""
|
262 |
+
261,"d","c",15340,4,2015,1,39,2009,"Jan,Apr,Jul,Oct"
|
263 |
+
262,"b","a",1180,5,2013,0,,,""
|
264 |
+
263,"a","c",1140,5,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
265 |
+
264,"a","a",180,3,2014,0,,,""
|
266 |
+
265,"a","a",4580,,,1,14,2015,"Jan,Apr,Jul,Oct"
|
267 |
+
266,"a","c",360,3,2014,1,9,2011,"Mar,Jun,Sept,Dec"
|
268 |
+
267,"c","a",2460,1,2012,0,,,""
|
269 |
+
268,"a","a",4520,2,2014,0,,,""
|
270 |
+
269,"a","c",60,6,2015,0,,,""
|
271 |
+
270,"a","a",1450,7,2014,0,,,""
|
272 |
+
271,"a","a",420,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
273 |
+
272,"a","a",16180,7,2003,1,14,2011,"Jan,Apr,Jul,Oct"
|
274 |
+
273,"a","c",8480,,,0,,,""
|
275 |
+
274,"b","b",3640,,,1,10,2013,"Jan,Apr,Jul,Oct"
|
276 |
+
275,"d","a",300,5,2014,1,40,2014,"Jan,Apr,Jul,Oct"
|
277 |
+
276,"a","a",2960,10,2014,1,36,2013,"Mar,Jun,Sept,Dec"
|
278 |
+
277,"d","c",7840,,,1,31,2009,"Feb,May,Aug,Nov"
|
279 |
+
278,"a","c",9260,2,2010,0,,,""
|
280 |
+
279,"d","c",2320,,,1,40,2012,"Jan,Apr,Jul,Oct"
|
281 |
+
280,"d","c",18640,9,2013,1,10,2014,"Mar,Jun,Sept,Dec"
|
282 |
+
281,"d","c",6970,9,2011,0,,,""
|
283 |
+
282,"a","a",1220,12,2010,0,,,""
|
284 |
+
283,"a","a",2260,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
285 |
+
284,"d","a",1290,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
286 |
+
285,"a","a",2410,,,0,,,""
|
287 |
+
286,"a","a",1460,4,2015,0,,,""
|
288 |
+
287,"c","a",2740,5,2009,1,40,2014,"Jan,Apr,Jul,Oct"
|
289 |
+
288,"d","a",800,,,1,14,2011,"Mar,Jun,Sept,Dec"
|
290 |
+
289,"d","a",6540,12,2007,0,,,""
|
291 |
+
290,"a","a",4150,5,2001,0,,,""
|
292 |
+
291,"d","a",,,,0,,,""
|
293 |
+
292,"a","a",1100,6,2009,0,,,""
|
294 |
+
293,"c","c",140,11,2007,0,,,""
|
295 |
+
294,"a","a",3150,5,2005,0,,,""
|
296 |
+
295,"a","a",210,11,2000,1,36,2013,"Mar,Jun,Sept,Dec"
|
297 |
+
296,"a","a",9580,5,2007,1,45,2014,"Feb,May,Aug,Nov"
|
298 |
+
297,"a","a",2300,9,2010,0,,,""
|
299 |
+
298,"d","a",19840,7,2009,0,,,""
|
300 |
+
299,"d","c",38630,9,2012,0,,,""
|
301 |
+
300,"a","c",120,4,2009,1,1,2012,"Jan,Apr,Jul,Oct"
|
302 |
+
301,"a","c",4510,3,2015,0,,,""
|
303 |
+
302,"d","c",2190,12,2007,1,9,2011,"Mar,Jun,Sept,Dec"
|
304 |
+
303,"a","a",15430,11,2012,1,18,2011,"Feb,May,Aug,Nov"
|
305 |
+
304,"a","a",1950,7,2015,0,,,""
|
306 |
+
305,"c","c",2470,2,2005,1,31,2013,"Mar,Jun,Sept,Dec"
|
307 |
+
306,"a","a",5100,4,2007,1,40,2014,"Jan,Apr,Jul,Oct"
|
308 |
+
307,"a","a",18660,9,2002,0,,,""
|
309 |
+
308,"a","a",1070,12,2006,1,13,2010,"Jan,Apr,Jul,Oct"
|
310 |
+
309,"d","a",8740,,,1,37,2009,"Feb,May,Aug,Nov"
|
311 |
+
310,"a","c",2290,,,1,10,2014,"Mar,Jun,Sept,Dec"
|
312 |
+
311,"a","c",680,7,2005,0,,,""
|
313 |
+
312,"d","a",11300,3,2012,0,,,""
|
314 |
+
313,"d","c",14160,,,0,,,""
|
315 |
+
314,"a","a",3560,10,2001,1,31,2013,"Feb,May,Aug,Nov"
|
316 |
+
315,"a","c",38710,4,2013,0,,,""
|
317 |
+
316,"d","a",9000,8,2001,0,,,""
|
318 |
+
317,"d","a",3140,7,2013,1,14,2011,"Jan,Apr,Jul,Oct"
|
319 |
+
318,"d","c",32330,3,2014,0,,,""
|
320 |
+
319,"a","c",570,9,2012,1,27,2012,"Mar,Jun,Sept,Dec"
|
321 |
+
320,"a","c",210,9,2012,0,,,""
|
322 |
+
321,"c","c",8140,11,2013,1,10,2014,"Mar,Jun,Sept,Dec"
|
323 |
+
322,"a","a",17500,4,2001,1,37,2009,"Jan,Apr,Jul,Oct"
|
324 |
+
323,"d","c",8400,4,2012,1,5,2013,"Feb,May,Aug,Nov"
|
325 |
+
324,"a","a",13140,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
326 |
+
325,"a","c",350,3,2011,1,22,2011,"Feb,May,Aug,Nov"
|
327 |
+
326,"d","a",10070,5,2015,1,31,2013,"Feb,May,Aug,Nov"
|
328 |
+
327,"c","c",1390,12,2004,0,,,""
|
329 |
+
328,"a","a",3130,7,2002,0,,,""
|
330 |
+
329,"a","a",1310,6,1990,1,22,2012,"Mar,Jun,Sept,Dec"
|
331 |
+
330,"a","c",370,,,1,22,2012,"Mar,Jun,Sept,Dec"
|
332 |
+
331,"a","c",670,,,1,14,2015,"Jan,Apr,Jul,Oct"
|
333 |
+
332,"a","a",1840,3,2006,0,,,""
|
334 |
+
333,"a","c",3720,2,2010,0,,,""
|
335 |
+
334,"d","c",4040,8,2008,1,18,2013,"Mar,Jun,Sept,Dec"
|
336 |
+
335,"b","a",90,,,1,31,2013,"Jan,Apr,Jul,Oct"
|
337 |
+
336,"a","a",190,7,2014,0,,,""
|
338 |
+
337,"d","c",10600,7,2005,1,45,2014,"Feb,May,Aug,Nov"
|
339 |
+
338,"a","c",1590,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
340 |
+
339,"a","c",2280,,,1,10,2013,"Mar,Jun,Sept,Dec"
|
341 |
+
340,"a","c",8080,,,0,,,""
|
342 |
+
341,"a","a",190,9,2011,0,,,""
|
343 |
+
342,"d","c",15770,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
344 |
+
343,"d","a",18650,4,2004,1,14,2014,"Jan,Apr,Jul,Oct"
|
345 |
+
344,"a","c",300,4,2011,1,14,2011,"Jan,Apr,Jul,Oct"
|
346 |
+
345,"a","a",120,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
347 |
+
346,"a","c",8090,,,0,,,""
|
348 |
+
347,"d","c",9360,7,2013,1,22,2012,"Mar,Jun,Sept,Dec"
|
349 |
+
348,"a","a",16490,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
350 |
+
349,"c","c",1490,4,2009,0,,,""
|
351 |
+
350,"d","a",8880,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
352 |
+
351,"a","a",5290,11,2012,1,5,2013,"Feb,May,Aug,Nov"
|
353 |
+
352,"d","c",6360,,,1,40,2012,"Mar,Jun,Sept,Dec"
|
354 |
+
353,"b","b",900,,,1,14,2013,"Feb,May,Aug,Nov"
|
355 |
+
354,"d","c",1500,10,2005,0,,,""
|
356 |
+
355,"a","c",9720,8,2013,0,,,""
|
357 |
+
356,"d","c",8970,12,2007,1,22,2012,"Feb,May,Aug,Nov"
|
358 |
+
357,"a","a",2060,10,2008,0,,,""
|
359 |
+
358,"a","a",2890,10,2003,0,,,""
|
360 |
+
359,"d","c",4370,,,0,,,""
|
361 |
+
360,"a","a",2040,6,2007,0,,,""
|
362 |
+
361,"c","c",4490,5,2014,1,5,2013,"Feb,May,Aug,Nov"
|
363 |
+
362,"c","c",340,,,0,,,""
|
364 |
+
363,"a","a",250,9,2009,0,,,""
|
365 |
+
364,"a","c",13620,,,1,10,2014,"Mar,Jun,Sept,Dec"
|
366 |
+
365,"c","a",2410,,,1,45,2009,"Feb,May,Aug,Nov"
|
367 |
+
366,"d","c",6470,12,2004,0,,,""
|
368 |
+
367,"d","c",2640,9,2012,0,,,""
|
369 |
+
368,"d","c",1450,4,2005,1,45,2009,"Feb,May,Aug,Nov"
|
370 |
+
369,"d","c",5870,4,2014,0,,,""
|
371 |
+
370,"d","a",8250,10,2000,1,31,2009,"Jan,Apr,Jul,Oct"
|
372 |
+
371,"d","c",1970,7,2009,1,45,2014,"Feb,May,Aug,Nov"
|
373 |
+
372,"d","c",4880,8,2010,1,18,2014,"Jan,Apr,Jul,Oct"
|
374 |
+
373,"d","c",11120,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
375 |
+
374,"a","a",1150,9,2007,0,,,""
|
376 |
+
375,"a","c",15710,2,2013,1,37,2009,"Jan,Apr,Jul,Oct"
|
377 |
+
376,"a","a",160,8,2012,0,,,""
|
378 |
+
377,"a","c",100,6,2010,1,18,2010,"Feb,May,Aug,Nov"
|
379 |
+
378,"a","c",2140,8,2012,0,,,""
|
380 |
+
379,"d","a",6630,,,0,,,""
|
381 |
+
380,"a","a",2240,5,2013,1,10,2014,"Mar,Jun,Sept,Dec"
|
382 |
+
381,"a","a",1800,11,2006,1,5,2013,"Feb,May,Aug,Nov"
|
383 |
+
382,"c","c",26130,11,2002,0,,,""
|
384 |
+
383,"a","c",350,,,0,,,""
|
385 |
+
384,"a","c",130,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
386 |
+
385,"d","a",4580,9,2007,0,,,""
|
387 |
+
386,"d","c",1460,4,2014,1,31,2013,"Jan,Apr,Jul,Oct"
|
388 |
+
387,"c","a",210,,,1,36,2013,"Mar,Jun,Sept,Dec"
|
389 |
+
388,"a","a",2260,,,0,,,""
|
390 |
+
389,"a","c",6690,8,2011,0,,,""
|
391 |
+
390,"a","c",1600,4,2009,0,,,""
|
392 |
+
391,"a","a",460,11,2014,1,31,2013,"Feb,May,Aug,Nov"
|
393 |
+
392,"a","a",2120,,,0,,,""
|
394 |
+
393,"d","c",4820,3,2008,0,,,""
|
395 |
+
394,"d","a",10850,,,0,,,""
|
396 |
+
395,"a","a",3620,2,2013,0,,,""
|
397 |
+
396,"a","c",23130,,,0,,,""
|
398 |
+
397,"a","c",130,,,1,27,2013,"Feb,May,Aug,Nov"
|
399 |
+
398,"c","c",1540,,,1,1,2012,"Jan,Apr,Jul,Oct"
|
400 |
+
399,"a","a",5360,9,2012,1,40,2011,"Jan,Apr,Jul,Oct"
|
401 |
+
400,"a","a",70,11,2004,1,14,2011,"Jan,Apr,Jul,Oct"
|
402 |
+
401,"a","c",9200,10,2009,1,14,2012,"Jan,Apr,Jul,Oct"
|
403 |
+
402,"c","c",5830,9,2011,1,13,2010,"Jan,Apr,Jul,Oct"
|
404 |
+
403,"a","a",4970,7,2015,0,,,""
|
405 |
+
404,"a","c",1420,,,1,10,2013,"Mar,Jun,Sept,Dec"
|
406 |
+
405,"a","a",1080,4,2008,1,14,2011,"Jan,Apr,Jul,Oct"
|
407 |
+
406,"d","c",8240,3,2001,1,10,2013,"Feb,May,Aug,Nov"
|
408 |
+
407,"a","a",5890,10,2003,1,14,2011,"Feb,May,Aug,Nov"
|
409 |
+
408,"c","a",1560,,,1,45,2009,"Feb,May,Aug,Nov"
|
410 |
+
409,"d","c",840,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
411 |
+
410,"c","a",40,11,2011,1,22,2012,"Mar,Jun,Sept,Dec"
|
412 |
+
411,"d","c",8460,,,0,,,""
|
413 |
+
412,"d","c",4460,,,1,39,2010,"Jan,Apr,Jul,Oct"
|
414 |
+
413,"a","c",760,9,2014,0,,,""
|
415 |
+
414,"d","c",6210,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
416 |
+
415,"d","c",6910,4,2005,0,,,""
|
417 |
+
416,"a","c",4650,6,2014,0,,,""
|
418 |
+
417,"a","c",840,,,1,10,2014,"Jan,Apr,Jul,Oct"
|
419 |
+
418,"a","a",1060,5,2009,1,27,2011,"Feb,May,Aug,Nov"
|
420 |
+
419,"c","a",1620,9,2009,0,,,""
|
421 |
+
420,"d","c",250,,,1,27,2012,"Jan,Apr,Jul,Oct"
|
422 |
+
421,"c","c",3530,6,2012,1,35,2012,"Mar,Jun,Sept,Dec"
|
423 |
+
422,"a","c",2880,,,0,,,""
|
424 |
+
423,"b","a",1270,5,2014,0,,,""
|
425 |
+
424,"d","c",1250,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
426 |
+
425,"d","c",1460,,,0,,,""
|
427 |
+
426,"a","a",250,,,0,,,""
|
428 |
+
427,"a","c",70,7,2005,1,13,2010,"Jan,Apr,Jul,Oct"
|
429 |
+
428,"d","a",2960,12,2014,1,23,2015,"Mar,Jun,Sept,Dec"
|
430 |
+
429,"d","c",16350,7,2005,1,31,2013,"Jan,Apr,Jul,Oct"
|
431 |
+
430,"d","c",12870,10,2008,0,,,""
|
432 |
+
431,"d","c",4520,,,0,,,""
|
433 |
+
432,"a","a",810,5,2013,0,,,""
|
434 |
+
433,"a","c",30030,11,2010,0,,,""
|
435 |
+
434,"a","a",13020,8,2003,1,40,2014,"Jan,Apr,Jul,Oct"
|
436 |
+
435,"a","a",910,,,0,,,""
|
437 |
+
436,"d","a",2300,,,0,,,""
|
438 |
+
437,"c","c",430,,,1,50,2010,"Jan,Apr,Jul,Oct"
|
439 |
+
438,"d","c",1110,,,1,40,2012,"Jan,Apr,Jul,Oct"
|
440 |
+
439,"a","a",1350,9,2009,0,,,""
|
441 |
+
440,"d","a",3900,4,2005,1,45,2009,"Feb,May,Aug,Nov"
|
442 |
+
441,"d","a",2530,,,0,,,""
|
443 |
+
442,"c","a",500,,,1,45,2009,"Feb,May,Aug,Nov"
|
444 |
+
443,"d","a",11400,12,2005,0,,,""
|
445 |
+
444,"c","a",1700,11,2009,0,,,""
|
446 |
+
445,"a","a",240,,,0,,,""
|
447 |
+
446,"a","a",340,10,2000,1,31,2013,"Feb,May,Aug,Nov"
|
448 |
+
447,"a","c",1510,9,2013,0,,,""
|
449 |
+
448,"a","c",3970,9,2009,0,,,""
|
450 |
+
449,"a","c",120,12,2014,1,37,2009,"Jan,Apr,Jul,Oct"
|
451 |
+
450,"c","a",5780,11,1994,1,10,2014,"Mar,Jun,Sept,Dec"
|
452 |
+
451,"a","a",2460,4,2009,1,13,2010,"Jan,Apr,Jul,Oct"
|
453 |
+
452,"a","c",1850,8,2013,1,5,2011,"Feb,May,Aug,Nov"
|
454 |
+
453,"a","c",75860,,,0,,,""
|
455 |
+
454,"a","a",26450,,,0,,,""
|
456 |
+
455,"d","c",7660,9,2010,0,,,""
|
457 |
+
456,"a","c",140,,,0,,,""
|
458 |
+
457,"d","c",13140,,,1,31,2013,"Jan,Apr,Jul,Oct"
|
459 |
+
458,"c","a",3390,,,0,,,""
|
460 |
+
459,"a","a",250,9,2008,1,5,2013,"Feb,May,Aug,Nov"
|
461 |
+
460,"a","a",34050,4,2008,0,,,""
|
462 |
+
461,"d","c",1790,7,2013,1,40,2013,"Jan,Apr,Jul,Oct"
|
463 |
+
462,"a","a",44320,8,2008,0,,,""
|
464 |
+
463,"a","a",4160,,,0,,,""
|
465 |
+
464,"c","a",520,3,2009,0,,,""
|
466 |
+
465,"d","c",10890,4,2005,0,,,""
|
467 |
+
466,"a","c",3110,3,2003,0,,,""
|
468 |
+
467,"a","c",20390,4,2008,0,,,""
|
469 |
+
468,"c","c",5260,9,2012,0,,,""
|
470 |
+
469,"c","c",710,9,2005,0,,,""
|
471 |
+
470,"a","c",50,,,0,,,""
|
472 |
+
471,"d","a",5300,,,1,45,2009,"Feb,May,Aug,Nov"
|
473 |
+
472,"c","c",5030,8,2011,0,,,""
|
474 |
+
473,"a","a",50,,,0,,,""
|
475 |
+
474,"c","a",14810,,,1,14,2011,"Mar,Jun,Sept,Dec"
|
476 |
+
475,"a","a",140,9,2005,0,,,""
|
477 |
+
476,"d","a",8300,9,2006,0,,,""
|
478 |
+
477,"d","a",770,7,2010,1,35,2010,"Jan,Apr,Jul,Oct"
|
479 |
+
478,"d","c",1940,3,2012,0,,,""
|
480 |
+
479,"a","a",320,12,2005,1,9,2011,"Feb,May,Aug,Nov"
|
481 |
+
480,"a","a",300,11,2012,0,,,""
|
482 |
+
481,"c","c",7470,,,1,44,2012,"Feb,May,Aug,Nov"
|
483 |
+
482,"c","a",2550,10,2005,0,,,""
|
484 |
+
483,"a","c",2310,9,2011,1,13,2010,"Jan,Apr,Jul,Oct"
|
485 |
+
484,"a","c",14300,3,2011,0,,,""
|
486 |
+
485,"d","c",3270,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
487 |
+
486,"a","a",2320,,,1,31,2013,"Jan,Apr,Jul,Oct"
|
488 |
+
487,"d","c",2180,9,2012,1,40,2012,"Jan,Apr,Jul,Oct"
|
489 |
+
488,"a","c",2890,4,2014,0,,,""
|
490 |
+
489,"a","a",14960,11,2013,1,37,2009,"Jan,Apr,Jul,Oct"
|
491 |
+
490,"a","a",660,4,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
492 |
+
491,"d","c",4680,,,1,22,2012,"Mar,Jun,Sept,Dec"
|
493 |
+
492,"a","a",1740,3,2008,1,40,2012,"Jan,Apr,Jul,Oct"
|
494 |
+
493,"d","c",1150,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
495 |
+
494,"b","a",1260,6,2011,0,,,""
|
496 |
+
495,"d","a",5470,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
497 |
+
496,"d","c",2780,6,2015,0,,,""
|
498 |
+
497,"a","c",1610,,,0,,,""
|
499 |
+
498,"a","a",990,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
500 |
+
499,"c","c",450,,,1,5,2013,"Feb,May,Aug,Nov"
|
501 |
+
500,"d","c",10690,9,2007,1,5,2013,"Jan,Apr,Jul,Oct"
|
502 |
+
501,"a","c",1620,9,2006,0,,,""
|
503 |
+
502,"a","a",220,2,2002,1,37,2009,"Jan,Apr,Jul,Oct"
|
504 |
+
503,"d","c",13080,9,2006,1,14,2011,"Jan,Apr,Jul,Oct"
|
505 |
+
504,"c","c",820,,,0,,,""
|
506 |
+
505,"a","a",350,,,1,5,2013,"Feb,May,Aug,Nov"
|
507 |
+
506,"a","a",1850,12,2014,1,18,2011,"Feb,May,Aug,Nov"
|
508 |
+
507,"a","c",9070,4,2011,1,37,2009,"Jan,Apr,Jul,Oct"
|
509 |
+
508,"a","c",1280,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
510 |
+
509,"a","a",4740,7,2008,1,37,2009,"Jan,Apr,Jul,Oct"
|
511 |
+
510,"a","c",8260,,,0,,,""
|
512 |
+
511,"a","a",2060,9,2009,0,,,""
|
513 |
+
512,"b","b",590,,,1,5,2013,"Mar,Jun,Sept,Dec"
|
514 |
+
513,"a","a",400,8,2013,0,,,""
|
515 |
+
514,"c","c",1200,7,2012,1,27,2012,"Jan,Apr,Jul,Oct"
|
516 |
+
515,"d","c",11260,,,1,9,2011,"Feb,May,Aug,Nov"
|
517 |
+
516,"a","c",20,,,1,35,2010,"Mar,Jun,Sept,Dec"
|
518 |
+
517,"a","c",22490,,,0,,,""
|
519 |
+
518,"d","c",3330,3,2015,1,13,2010,"Jan,Apr,Jul,Oct"
|
520 |
+
519,"c","c",2510,8,2009,1,1,2012,"Jan,Apr,Jul,Oct"
|
521 |
+
520,"a","c",6900,,,1,40,2012,"Mar,Jun,Sept,Dec"
|
522 |
+
521,"d","a",18610,11,2002,1,48,2011,"Mar,Jun,Sept,Dec"
|
523 |
+
522,"d","c",7160,11,2012,1,9,2011,"Jan,Apr,Jul,Oct"
|
524 |
+
523,"c","c",50,11,2013,0,,,""
|
525 |
+
524,"a","c",40860,9,2013,0,,,""
|
526 |
+
525,"d","c",1870,9,2013,0,,,""
|
527 |
+
526,"a","a",120,,,1,48,2011,"Mar,Jun,Sept,Dec"
|
528 |
+
527,"d","c",5830,4,2008,0,,,""
|
529 |
+
528,"a","c",20620,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
530 |
+
529,"d","c",12920,9,2012,0,,,""
|
531 |
+
530,"a","c",18160,,,0,,,""
|
532 |
+
531,"a","c",4030,,,0,,,""
|
533 |
+
532,"a","c",1070,8,2010,0,,,""
|
534 |
+
533,"a","c",5950,,,0,,,""
|
535 |
+
534,"d","a",1200,9,2009,1,45,2009,"Jan,Apr,Jul,Oct"
|
536 |
+
535,"a","a",3570,4,2007,0,,,""
|
537 |
+
536,"a","c",4700,9,2002,1,31,2013,"Feb,May,Aug,Nov"
|
538 |
+
537,"a","a",600,5,2002,1,1,2012,"Jan,Apr,Jul,Oct"
|
539 |
+
538,"a","a",990,2,2010,0,,,""
|
540 |
+
539,"a","a",770,5,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
541 |
+
540,"d","c",810,,,1,48,2012,"Jan,Apr,Jul,Oct"
|
542 |
+
541,"a","c",650,7,1990,0,,,""
|
543 |
+
542,"a","a",7280,9,2012,1,1,2013,"Jan,Apr,Jul,Oct"
|
544 |
+
543,"c","a",1080,12,2012,0,,,""
|
545 |
+
544,"a","a",250,12,2001,1,13,2010,"Jan,Apr,Jul,Oct"
|
546 |
+
545,"a","c",5020,5,2006,1,18,2014,"Feb,May,Aug,Nov"
|
547 |
+
546,"a","a",580,1,2005,0,,,""
|
548 |
+
547,"d","c",8990,11,2009,1,35,2010,"Mar,Jun,Sept,Dec"
|
549 |
+
548,"d","c",3760,2,2009,0,,,""
|
550 |
+
549,"a","c",2330,,,0,,,""
|
551 |
+
550,"d","c",50,6,2015,0,,,""
|
552 |
+
551,"a","c",2190,9,2013,0,,,""
|
553 |
+
552,"a","a",4260,7,2008,1,37,2009,"Jan,Apr,Jul,Oct"
|
554 |
+
553,"c","a",3040,9,2002,1,13,2010,"Jan,Apr,Jul,Oct"
|
555 |
+
554,"c","c",1200,,,0,,,""
|
556 |
+
555,"d","a",1560,1,2014,1,10,2013,"Mar,Jun,Sept,Dec"
|
557 |
+
556,"d","c",1140,11,2014,0,,,""
|
558 |
+
557,"a","a",250,,,0,,,""
|
559 |
+
558,"a","a",3000,2,2010,0,,,""
|
560 |
+
559,"d","a",3910,11,2006,1,5,2013,"Feb,May,Aug,Nov"
|
561 |
+
560,"c","c",1910,7,2013,0,,,""
|
562 |
+
561,"d","a",14300,,,0,,,""
|
563 |
+
562,"b","c",1210,,,0,,,""
|
564 |
+
563,"a","a",700,3,2015,1,10,2014,"Jan,Apr,Jul,Oct"
|
565 |
+
564,"d","c",6540,,,1,14,2013,"Jan,Apr,Jul,Oct"
|
566 |
+
565,"a","c",160,7,2007,0,,,""
|
567 |
+
566,"a","a",3620,,,1,40,2013,"Jan,Apr,Jul,Oct"
|
568 |
+
567,"c","a",1010,9,2012,1,18,2011,"Feb,May,Aug,Nov"
|
569 |
+
568,"d","c",4270,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
570 |
+
569,"a","a",1340,9,2006,0,,,""
|
571 |
+
570,"a","a",180,11,2006,0,,,""
|
572 |
+
571,"d","a",2110,11,1995,1,40,2014,"Jan,Apr,Jul,Oct"
|
573 |
+
572,"d","c",9230,4,2004,1,37,2009,"Jan,Apr,Jul,Oct"
|
574 |
+
573,"a","a",1190,11,2012,1,36,2013,"Jan,Apr,Jul,Oct"
|
575 |
+
574,"d","a",4400,,,0,,,""
|
576 |
+
575,"a","a",960,5,2008,1,13,2010,"Jan,Apr,Jul,Oct"
|
577 |
+
576,"c","a",50,11,2006,0,,,""
|
578 |
+
577,"a","c",2270,,,1,35,2012,"Mar,Jun,Sept,Dec"
|
579 |
+
578,"d","a",12700,4,2013,0,,,""
|
580 |
+
579,"c","a",20970,11,2012,0,,,""
|
581 |
+
580,"a","c",170,2,2009,0,,,""
|
582 |
+
581,"a","a",7250,12,2013,0,,,""
|
583 |
+
582,"a","a",120,,,0,,,""
|
584 |
+
583,"a","a",2640,11,2002,0,,,""
|
585 |
+
584,"d","a",1360,,,1,35,2010,"Mar,Jun,Sept,Dec"
|
586 |
+
585,"d","c",440,4,2014,0,,,""
|
587 |
+
586,"a","c",250,10,2008,0,,,""
|
588 |
+
587,"d","c",330,9,2006,1,14,2011,"Jan,Apr,Jul,Oct"
|
589 |
+
588,"d","c",15720,3,2010,0,,,""
|
590 |
+
589,"a","c",360,,,1,18,2013,"Feb,May,Aug,Nov"
|
591 |
+
590,"d","c",4520,9,2010,1,31,2013,"Jan,Apr,Jul,Oct"
|
592 |
+
591,"a","c",3340,,,1,22,2012,"Mar,Jun,Sept,Dec"
|
593 |
+
592,"a","a",2540,6,2005,0,,,""
|
594 |
+
593,"a","c",33060,3,2010,0,,,""
|
595 |
+
594,"a","a",1790,10,2011,0,,,""
|
596 |
+
595,"c","c",1130,6,2015,0,,,""
|
597 |
+
596,"c","a",290,9,2006,0,,,""
|
598 |
+
597,"a","a",150,9,2008,1,1,2012,"Mar,Jun,Sept,Dec"
|
599 |
+
598,"c","a",550,12,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
600 |
+
599,"d","c",580,11,2014,0,,,""
|
601 |
+
600,"d","c",17340,6,2010,1,9,2011,"Feb,May,Aug,Nov"
|
602 |
+
601,"d","a",8220,4,2014,1,14,2011,"Jan,Apr,Jul,Oct"
|
603 |
+
602,"a","a",2710,7,2001,1,22,2012,"Mar,Jun,Sept,Dec"
|
604 |
+
603,"a","a",340,4,2007,1,13,2010,"Jan,Apr,Jul,Oct"
|
605 |
+
604,"d","a",10950,3,2014,0,,,""
|
606 |
+
605,"d","a",10310,4,2003,1,37,2009,"Jan,Apr,Jul,Oct"
|
607 |
+
606,"a","a",2260,11,2007,0,,,""
|
608 |
+
607,"a","a",350,8,1999,1,14,2011,"Jan,Apr,Jul,Oct"
|
609 |
+
608,"a","c",18370,2,2013,1,14,2011,"Jan,Apr,Jul,Oct"
|
610 |
+
609,"a","a",2070,9,2007,0,,,""
|
611 |
+
610,"a","a",660,1,2007,0,,,""
|
612 |
+
611,"a","a",8080,12,2002,1,40,2014,"Jan,Apr,Jul,Oct"
|
613 |
+
612,"d","c",2490,11,2012,1,31,2009,"Jan,Apr,Jul,Oct"
|
614 |
+
613,"c","a",250,6,2007,1,14,2011,"Jan,Apr,Jul,Oct"
|
615 |
+
614,"a","a",1160,12,2012,0,,,""
|
616 |
+
615,"d","a",730,8,2007,0,,,""
|
617 |
+
616,"a","c",3040,8,2011,1,35,2010,"Mar,Jun,Sept,Dec"
|
618 |
+
617,"a","c",8940,,,1,9,2011,"Jan,Apr,Jul,Oct"
|
619 |
+
618,"d","c",9910,,,0,,,""
|
620 |
+
619,"a","a",1600,6,2006,1,45,2009,"Feb,May,Aug,Nov"
|
621 |
+
620,"d","c",5440,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
622 |
+
621,"a","a",30,7,2002,0,,,""
|
623 |
+
622,"a","c",,,,0,,,""
|
624 |
+
623,"a","a",4080,3,2011,1,13,2010,"Jan,Apr,Jul,Oct"
|
625 |
+
624,"a","c",6920,9,2011,0,,,""
|
626 |
+
625,"a","a",1170,4,2011,1,22,2012,"Feb,May,Aug,Nov"
|
627 |
+
626,"c","c",10740,11,2013,0,,,""
|
628 |
+
627,"c","c",3970,3,2010,0,,,""
|
629 |
+
628,"a","c",2180,,,0,,,""
|
630 |
+
629,"d","a",510,7,2014,1,23,2015,"Mar,Jun,Sept,Dec"
|
631 |
+
630,"a","a",1690,4,2015,0,,,""
|
632 |
+
631,"d","c",2870,,,1,35,2012,"Mar,Jun,Sept,Dec"
|
633 |
+
632,"a","a",3350,2,2010,0,,,""
|
634 |
+
633,"d","a",11640,4,2005,1,22,2011,"Jan,Apr,Jul,Oct"
|
635 |
+
634,"d","a",18610,,,0,,,""
|
636 |
+
635,"a","a",27530,4,2014,0,,,""
|
637 |
+
636,"c","a",720,10,2004,1,13,2010,"Jan,Apr,Jul,Oct"
|
638 |
+
637,"d","c",9790,,,1,31,2009,"Feb,May,Aug,Nov"
|
639 |
+
638,"d","a",10170,11,2001,0,,,""
|
640 |
+
639,"a","a",7780,11,2006,0,,,""
|
641 |
+
640,"d","c",8040,,,0,,,""
|
642 |
+
641,"a","c",610,12,2003,1,36,2013,"Mar,Jun,Sept,Dec"
|
643 |
+
642,"c","c",530,4,2005,1,35,2010,"Mar,Jun,Sept,Dec"
|
644 |
+
643,"a","a",230,6,2010,1,18,2010,"Feb,May,Aug,Nov"
|
645 |
+
644,"c","a",4030,12,2004,1,14,2011,"Jan,Apr,Jul,Oct"
|
646 |
+
645,"a","a",90,,,1,45,2009,"Feb,May,Aug,Nov"
|
647 |
+
646,"a","a",620,9,2014,0,,,""
|
648 |
+
647,"a","c",7420,4,2013,0,,,""
|
649 |
+
648,"d","a",2130,12,2008,0,,,""
|
650 |
+
649,"a","a",14570,11,2002,0,,,""
|
651 |
+
650,"a","a",1420,10,2012,1,40,2014,"Jan,Apr,Jul,Oct"
|
652 |
+
651,"a","a",200,,,0,,,""
|
653 |
+
652,"a","a",20390,,,0,,,""
|
654 |
+
653,"d","c",7520,7,2014,1,45,2009,"Feb,May,Aug,Nov"
|
655 |
+
654,"c","a",6930,9,2006,0,,,""
|
656 |
+
655,"d","c",960,11,2012,1,5,2013,"Feb,May,Aug,Nov"
|
657 |
+
656,"d","a",410,4,2009,1,13,2010,"Jan,Apr,Jul,Oct"
|
658 |
+
657,"c","c",80,1,2006,1,10,2014,"Jan,Apr,Jul,Oct"
|
659 |
+
658,"d","c",520,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
660 |
+
659,"d","a",1590,3,2012,0,,,""
|
661 |
+
660,"a","a",1200,11,2006,1,40,2014,"Jan,Apr,Jul,Oct"
|
662 |
+
661,"d","c",2140,7,2013,0,,,""
|
663 |
+
662,"d","a",1070,,,0,,,""
|
664 |
+
663,"a","c",7860,5,2005,0,,,""
|
665 |
+
664,"d","c",1680,10,2005,0,,,""
|
666 |
+
665,"a","a",90,12,2012,1,14,2011,"Jan,Apr,Jul,Oct"
|
667 |
+
666,"c","c",2700,,,1,9,2011,"Mar,Jun,Sept,Dec"
|
668 |
+
667,"d","c",2870,9,2012,0,,,""
|
669 |
+
668,"c","a",1270,9,2010,0,,,""
|
670 |
+
669,"d","a",17080,7,2012,1,31,2013,"Jan,Apr,Jul,Oct"
|
671 |
+
670,"a","a",2060,,,1,45,2009,"Feb,May,Aug,Nov"
|
672 |
+
671,"a","c",2070,2,2008,1,39,2010,"Jan,Apr,Jul,Oct"
|
673 |
+
672,"c","a",240,9,2002,0,,,""
|
674 |
+
673,"d","c",15170,,,1,5,2013,"Feb,May,Aug,Nov"
|
675 |
+
674,"a","a",2640,12,2005,1,31,2013,"Feb,May,Aug,Nov"
|
676 |
+
675,"a","a",2100,8,2013,1,14,2011,"Jan,Apr,Jul,Oct"
|
677 |
+
676,"b","b",1410,9,2008,0,,,""
|
678 |
+
677,"d","a",1740,6,2014,1,45,2009,"Feb,May,Aug,Nov"
|
679 |
+
678,"c","a",3250,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
680 |
+
679,"a","a",4140,9,2012,0,,,""
|
681 |
+
680,"c","a",170,,,1,35,2012,"Mar,Jun,Sept,Dec"
|
682 |
+
681,"a","c",620,,,1,1,2014,"Mar,Jun,Sept,Dec"
|
683 |
+
682,"b","a",150,9,2006,0,,,""
|
684 |
+
683,"a","a",2850,7,2014,0,,,""
|
685 |
+
684,"d","c",680,,,1,22,2012,"Jan,Apr,Jul,Oct"
|
686 |
+
685,"a","a",650,11,2013,1,37,2009,"Jan,Apr,Jul,Oct"
|
687 |
+
686,"a","a",20050,4,2002,0,,,""
|
688 |
+
687,"d","c",2770,,,0,,,""
|
689 |
+
688,"a","a",18760,8,2015,1,14,2011,"Jan,Apr,Jul,Oct"
|
690 |
+
689,"d","a",15040,10,2004,0,,,""
|
691 |
+
690,"a","a",100,,,0,,,""
|
692 |
+
691,"d","c",3030,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
693 |
+
692,"a","a",40,8,2001,0,,,""
|
694 |
+
693,"d","a",450,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
695 |
+
694,"a","c",460,11,2012,1,40,2014,"Jan,Apr,Jul,Oct"
|
696 |
+
695,"a","a",550,7,2011,1,1,2012,"Jan,Apr,Jul,Oct"
|
697 |
+
696,"a","c",430,,,0,,,""
|
698 |
+
697,"d","a",3780,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
699 |
+
698,"a","a",1790,5,2011,0,,,""
|
700 |
+
699,"a","a",180,,,1,5,2013,"Jan,Apr,Jul,Oct"
|
701 |
+
700,"a","c",830,,,1,27,2013,"Jan,Apr,Jul,Oct"
|
702 |
+
701,"d","a",1450,3,2012,1,14,2011,"Jan,Apr,Jul,Oct"
|
703 |
+
702,"a","a",8550,9,2001,1,45,2009,"Feb,May,Aug,Nov"
|
704 |
+
703,"a","a",80,6,2005,0,,,""
|
705 |
+
704,"d","c",1910,4,2009,0,,,""
|
706 |
+
705,"a","a",4140,9,2012,1,18,2011,"Feb,May,Aug,Nov"
|
707 |
+
706,"d","a",7830,9,2014,1,10,2014,"Mar,Jun,Sept,Dec"
|
708 |
+
707,"a","c",2900,7,1990,0,,,""
|
709 |
+
708,"c","c",11470,10,2009,1,18,2014,"Jan,Apr,Jul,Oct"
|
710 |
+
709,"a","a",500,12,2010,0,,,""
|
711 |
+
710,"d","a",1500,9,2008,1,14,2011,"Jan,Apr,Jul,Oct"
|
712 |
+
711,"d","a",17110,3,2007,1,5,2010,"Jan,Apr,Jul,Oct"
|
713 |
+
712,"a","a",4870,9,2007,1,45,2009,"Jan,Apr,Jul,Oct"
|
714 |
+
713,"a","c",220,,,1,10,2014,"Jan,Apr,Jul,Oct"
|
715 |
+
714,"d","c",12070,10,2005,1,10,2013,"Jan,Apr,Jul,Oct"
|
716 |
+
715,"a","a",14810,6,2014,0,,,""
|
717 |
+
716,"d","a",3200,1,2008,1,22,2011,"Jan,Apr,Jul,Oct"
|
718 |
+
717,"d","c",310,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
719 |
+
718,"a","a",1100,6,2015,0,,,""
|
720 |
+
719,"c","c",8190,,,1,45,2009,"Feb,May,Aug,Nov"
|
721 |
+
720,"a","c",15320,3,2011,1,14,2013,"Feb,May,Aug,Nov"
|
722 |
+
721,"a","c",3590,9,2012,1,22,2012,"Mar,Jun,Sept,Dec"
|
723 |
+
722,"a","a",50,,,0,,,""
|
724 |
+
723,"d","c",5650,9,2008,1,5,2013,"Feb,May,Aug,Nov"
|
725 |
+
724,"d","c",5900,,,0,,,""
|
726 |
+
725,"d","c",17540,6,2012,0,,,""
|
727 |
+
726,"a","c",40540,2,2002,0,,,""
|
728 |
+
727,"a","a",2050,3,2007,0,,,""
|
729 |
+
728,"d","a",13990,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
730 |
+
729,"c","c",8980,6,2011,0,,,""
|
731 |
+
730,"c","a",1190,9,2013,0,,,""
|
732 |
+
731,"a","a",15270,,,1,10,2014,"Jan,Apr,Jul,Oct"
|
733 |
+
732,"a","c",35280,,,0,,,""
|
734 |
+
733,"b","b",860,10,1999,0,,,""
|
735 |
+
734,"a","a",220,,,1,36,2013,"Mar,Jun,Sept,Dec"
|
736 |
+
735,"d","c",1920,4,2005,0,,,""
|
737 |
+
736,"c","c",1650,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
738 |
+
737,"a","a",100,5,2007,1,31,2013,"Jan,Apr,Jul,Oct"
|
739 |
+
738,"d","c",5980,10,2005,0,,,""
|
740 |
+
739,"d","c",2770,6,2008,1,22,2011,"Jan,Apr,Jul,Oct"
|
741 |
+
740,"d","a",6400,3,2014,0,,,""
|
742 |
+
741,"d","c",11900,,,0,,,""
|
743 |
+
742,"d","c",4380,,,0,,,""
|
744 |
+
743,"a","a",6710,11,2003,1,14,2012,"Jan,Apr,Jul,Oct"
|
745 |
+
744,"a","a",1370,12,2011,1,40,2014,"Jan,Apr,Jul,Oct"
|
746 |
+
745,"a","a",17650,11,2013,1,37,2009,"Jan,Apr,Jul,Oct"
|
747 |
+
746,"d","c",4330,2,2011,1,35,2011,"Mar,Jun,Sept,Dec"
|
748 |
+
747,"c","c",45740,8,2008,0,,,""
|
749 |
+
748,"d","a",2380,3,2010,1,14,2011,"Jan,Apr,Jul,Oct"
|
750 |
+
749,"a","a",3410,8,2011,1,14,2015,"Jan,Apr,Jul,Oct"
|
751 |
+
750,"d","a",8670,2,2002,1,14,2011,"Jan,Apr,Jul,Oct"
|
752 |
+
751,"a","a",650,10,2006,0,,,""
|
753 |
+
752,"a","a",970,3,2013,1,31,2013,"Feb,May,Aug,Nov"
|
754 |
+
753,"d","c",540,11,2012,1,35,2010,"Mar,Jun,Sept,Dec"
|
755 |
+
754,"c","c",380,5,2008,1,10,2014,"Mar,Jun,Sept,Dec"
|
756 |
+
755,"d","c",13130,12,2003,0,,,""
|
757 |
+
756,"a","c",50,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
758 |
+
757,"a","c",3450,,,0,,,""
|
759 |
+
758,"a","c",19780,6,2008,0,,,""
|
760 |
+
759,"a","a",110,11,2012,1,31,2013,"Feb,May,Aug,Nov"
|
761 |
+
760,"a","a",560,1,2011,0,,,""
|
762 |
+
761,"a","a",2390,9,2012,0,,,""
|
763 |
+
762,"d","c",1280,,,1,10,2013,"Mar,Jun,Sept,Dec"
|
764 |
+
763,"d","c",32240,3,2010,0,,,""
|
765 |
+
764,"a","c",26490,,,1,10,2014,"Mar,Jun,Sept,Dec"
|
766 |
+
765,"a","c",25430,5,1999,1,37,2009,"Jan,Apr,Jul,Oct"
|
767 |
+
766,"d","c",9820,,,0,,,""
|
768 |
+
767,"a","c",13080,,,0,,,""
|
769 |
+
768,"a","c",2630,9,2012,0,,,""
|
770 |
+
769,"b","b",840,,,1,48,2012,"Jan,Apr,Jul,Oct"
|
771 |
+
770,"a","c",100,4,2015,0,,,""
|
772 |
+
771,"a","a",20640,9,2007,0,,,""
|
773 |
+
772,"d","c",1850,,,0,,,""
|
774 |
+
773,"a","a",200,,,0,,,""
|
775 |
+
774,"a","c",640,9,2013,0,,,""
|
776 |
+
775,"d","c",6970,12,2005,1,22,2011,"Jan,Apr,Jul,Oct"
|
777 |
+
776,"c","a",700,4,2009,1,14,2011,"Jan,Apr,Jul,Oct"
|
778 |
+
777,"d","c",8250,10,2004,1,10,2013,"Mar,Jun,Sept,Dec"
|
779 |
+
778,"a","a",340,6,2003,1,40,2014,"Jan,Apr,Jul,Oct"
|
780 |
+
779,"a","a",16990,4,2004,0,,,""
|
781 |
+
780,"a","a",18160,,,0,,,""
|
782 |
+
781,"a","a",630,4,2007,0,,,""
|
783 |
+
782,"c","c",5390,8,2003,1,1,2012,"Jan,Apr,Jul,Oct"
|
784 |
+
783,"d","c",15490,,,0,,,""
|
785 |
+
784,"a","a",560,10,2014,1,10,2014,"Jan,Apr,Jul,Oct"
|
786 |
+
785,"d","c",970,7,2005,1,31,2013,"Feb,May,Aug,Nov"
|
787 |
+
786,"a","a",290,11,2006,1,5,2013,"Feb,May,Aug,Nov"
|
788 |
+
787,"c","c",3210,6,2009,0,,,""
|
789 |
+
788,"a","c",1530,3,2013,0,,,""
|
790 |
+
789,"a","c",9770,7,2003,0,,,""
|
791 |
+
790,"d","c",9070,12,2003,0,,,""
|
792 |
+
791,"a","a",5950,4,2007,0,,,""
|
793 |
+
792,"d","a",17280,10,2009,1,18,2011,"Feb,May,Aug,Nov"
|
794 |
+
793,"d","a",2710,7,2006,0,,,""
|
795 |
+
794,"c","c",5090,9,2006,0,,,""
|
796 |
+
795,"d","a",510,,,1,35,2010,"Mar,Jun,Sept,Dec"
|
797 |
+
796,"a","c",7180,11,2012,0,,,""
|
798 |
+
797,"a","a",2090,10,2012,1,40,2014,"Jan,Apr,Jul,Oct"
|
799 |
+
798,"a","a",9560,4,2001,0,,,""
|
800 |
+
799,"a","c",2700,,,0,,,""
|
801 |
+
800,"d","a",2020,7,2014,0,,,""
|
802 |
+
801,"d","a",48330,4,2013,0,,,""
|
803 |
+
802,"a","c",910,,,1,22,2011,"Feb,May,Aug,Nov"
|
804 |
+
803,"d","a",1760,,,1,10,2014,"Mar,Jun,Sept,Dec"
|
805 |
+
804,"c","c",2100,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
806 |
+
805,"d","a",24770,10,2011,1,10,2014,"Mar,Jun,Sept,Dec"
|
807 |
+
806,"d","a",260,,,1,44,2010,"Feb,May,Aug,Nov"
|
808 |
+
807,"a","a",3870,4,2008,0,,,""
|
809 |
+
808,"a","a",18620,,,1,31,2009,"Feb,May,Aug,Nov"
|
810 |
+
809,"a","a",12770,10,2000,0,,,""
|
811 |
+
810,"d","c",9640,11,2013,0,,,""
|
812 |
+
811,"a","a",410,9,2012,0,,,""
|
813 |
+
812,"d","a",2590,9,2012,0,,,""
|
814 |
+
813,"a","a",1560,9,2003,0,,,""
|
815 |
+
814,"d","c",24530,7,2013,0,,,""
|
816 |
+
815,"a","a",590,1,1900,1,40,2014,"Jan,Apr,Jul,Oct"
|
817 |
+
816,"c","c",460,,,0,,,""
|
818 |
+
817,"a","a",140,3,2006,0,,,""
|
819 |
+
818,"d","a",490,,,1,35,2010,"Mar,Jun,Sept,Dec"
|
820 |
+
819,"a","c",720,10,2014,0,,,""
|
821 |
+
820,"a","c",1650,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
822 |
+
821,"a","a",1700,9,2009,0,,,""
|
823 |
+
822,"a","c",410,11,2010,1,48,2010,"Mar,Jun,Sept,Dec"
|
824 |
+
823,"a","c",16210,11,2010,0,,,""
|
825 |
+
824,"a","a",17570,,,0,,,""
|
826 |
+
825,"a","a",380,5,2011,1,40,2014,"Jan,Apr,Jul,Oct"
|
827 |
+
826,"a","c",7980,6,2005,0,,,""
|
828 |
+
827,"a","c",250,1,2005,0,,,""
|
829 |
+
828,"d","c",3290,12,2014,0,,,""
|
830 |
+
829,"c","a",110,,,0,,,""
|
831 |
+
830,"a","c",6320,,,1,5,2011,"Jan,Apr,Jul,Oct"
|
832 |
+
831,"a","a",800,6,2007,0,,,""
|
833 |
+
832,"d","a",5070,,,1,45,2009,"Feb,May,Aug,Nov"
|
834 |
+
833,"d","c",3290,12,1999,1,35,2010,"Mar,Jun,Sept,Dec"
|
835 |
+
834,"a","a",3470,3,2012,0,,,""
|
836 |
+
835,"a","a",2890,12,2007,1,10,2014,"Mar,Jun,Sept,Dec"
|
837 |
+
836,"a","a",2720,9,2012,0,,,""
|
838 |
+
837,"a","c",14600,4,2015,0,,,""
|
839 |
+
838,"d","c",6890,,,1,48,2011,"Mar,Jun,Sept,Dec"
|
840 |
+
839,"c","a",240,1,2015,0,,,""
|
841 |
+
840,"a","a",1070,9,2009,0,,,""
|
842 |
+
841,"a","a",27650,8,2004,0,,,""
|
843 |
+
842,"d","c",1200,11,2007,0,,,""
|
844 |
+
843,"c","a",60,4,2006,0,,,""
|
845 |
+
844,"a","a",2030,9,2012,1,18,2011,"Feb,May,Aug,Nov"
|
846 |
+
845,"d","a",7860,11,2005,1,14,2011,"Jan,Apr,Jul,Oct"
|
847 |
+
846,"a","c",8860,4,2004,1,37,2009,"Jan,Apr,Jul,Oct"
|
848 |
+
847,"c","c",190,,,1,31,2013,"Feb,May,Aug,Nov"
|
849 |
+
848,"a","c",370,7,2007,1,14,2011,"Jan,Apr,Jul,Oct"
|
850 |
+
849,"c","c",5000,,,0,,,""
|
851 |
+
850,"d","a",1120,5,2007,1,31,2013,"Jan,Apr,Jul,Oct"
|
852 |
+
851,"d","c",2330,,,1,49,2014,"Mar,Jun,Sept,Dec"
|
853 |
+
852,"c","a",940,4,2004,1,14,2011,"Jan,Apr,Jul,Oct"
|
854 |
+
853,"a","a",14040,,,0,,,""
|
855 |
+
854,"c","a",4770,,,1,13,2010,"Jan,Apr,Jul,Oct"
|
856 |
+
855,"a","a",3440,,,1,45,2009,"Feb,May,Aug,Nov"
|
857 |
+
856,"a","a",3020,2,2010,0,,,""
|
858 |
+
857,"c","a",6270,8,2005,1,23,2014,"Mar,Jun,Sept,Dec"
|
859 |
+
858,"a","a",3370,12,2008,1,40,2014,"Jan,Apr,Jul,Oct"
|
860 |
+
859,"c","a",21770,7,2015,0,,,""
|
861 |
+
860,"c","c",5980,2,2010,0,,,""
|
862 |
+
861,"c","c",740,,,1,14,2013,"Mar,Jun,Sept,Dec"
|
863 |
+
862,"a","c",2840,3,2010,1,14,2011,"Jan,Apr,Jul,Oct"
|
864 |
+
863,"a","c",21370,11,2010,0,,,""
|
865 |
+
864,"a","a",1020,10,2012,1,45,2009,"Feb,May,Aug,Nov"
|
866 |
+
865,"d","c",2640,,,0,,,""
|
867 |
+
866,"d","a",9680,,,1,5,2013,"Feb,May,Aug,Nov"
|
868 |
+
867,"d","c",21810,9,2012,0,,,""
|
869 |
+
868,"d","c",1360,8,2005,1,10,2014,"Jan,Apr,Jul,Oct"
|
870 |
+
869,"c","a",230,10,2001,1,14,2011,"Jan,Apr,Jul,Oct"
|
871 |
+
870,"a","a",780,4,2009,0,,,""
|
872 |
+
871,"d","c",10620,,,0,,,""
|
873 |
+
872,"a","c",3860,9,2014,1,23,2015,"Mar,Jun,Sept,Dec"
|
874 |
+
873,"a","a",2040,11,2008,0,,,""
|
875 |
+
874,"a","a",3210,,,0,,,""
|
876 |
+
875,"d","a",5070,11,2007,1,18,2015,"Feb,May,Aug,Nov"
|
877 |
+
876,"a","a",21790,4,2005,1,18,2015,"Feb,May,Aug,Nov"
|
878 |
+
877,"a","c",29190,,,0,,,""
|
879 |
+
878,"d","c",1100,12,2014,0,,,""
|
880 |
+
879,"d","a",,,,1,5,2013,"Feb,May,Aug,Nov"
|
881 |
+
880,"a","c",4570,,,0,,,""
|
882 |
+
881,"a","a",180,3,2008,1,31,2013,"Feb,May,Aug,Nov"
|
883 |
+
882,"a","a",30,4,2013,0,,,""
|
884 |
+
883,"a","a",3200,6,2005,0,,,""
|
885 |
+
884,"d","c",7550,,,0,,,""
|
886 |
+
885,"a","a",480,12,2005,0,,,""
|
887 |
+
886,"a","c",12430,10,2004,0,,,""
|
888 |
+
887,"d","a",19700,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
889 |
+
888,"d","a",4450,6,2012,1,35,2012,"Mar,Jun,Sept,Dec"
|
890 |
+
889,"d","a",18670,12,2005,0,,,""
|
891 |
+
890,"a","a",4450,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
892 |
+
891,"a","c",350,,,1,31,2013,"Feb,May,Aug,Nov"
|
893 |
+
892,"a","a",19370,4,2002,0,,,""
|
894 |
+
893,"a","a",130,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
895 |
+
894,"a","a",190,11,2012,0,,,""
|
896 |
+
895,"a","c",4150,,,0,,,""
|
897 |
+
896,"a","c",170,9,2012,0,,,""
|
898 |
+
897,"c","c",3290,1,2007,1,5,2013,"Feb,May,Aug,Nov"
|
899 |
+
898,"a","a",18540,,,0,,,""
|
900 |
+
899,"d","a",2590,,,1,13,2010,"Jan,Apr,Jul,Oct"
|
901 |
+
900,"a","a",3920,4,2005,1,40,2014,"Jan,Apr,Jul,Oct"
|
902 |
+
901,"a","c",3170,4,2014,0,,,""
|
903 |
+
902,"a","a",310,5,2015,1,40,2014,"Jan,Apr,Jul,Oct"
|
904 |
+
903,"d","c",7290,9,2014,0,,,""
|
905 |
+
904,"d","c",570,7,2013,1,14,2011,"Jan,Apr,Jul,Oct"
|
906 |
+
905,"a","a",90,6,2014,0,,,""
|
907 |
+
906,"a","a",90,7,2010,0,,,""
|
908 |
+
907,"a","c",250,,,0,,,""
|
909 |
+
908,"a","a",1980,7,2010,1,37,2009,"Jan,Apr,Jul,Oct"
|
910 |
+
909,"a","c",1680,,,1,45,2009,"Feb,May,Aug,Nov"
|
911 |
+
910,"d","c",12480,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
912 |
+
911,"a","c",16490,,,0,,,""
|
913 |
+
912,"c","c",3100,5,2010,0,,,""
|
914 |
+
913,"a","a",280,,,0,,,""
|
915 |
+
914,"c","c",2640,4,2011,1,22,2012,"Mar,Jun,Sept,Dec"
|
916 |
+
915,"d","c",650,3,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
917 |
+
916,"a","a",90,11,2012,0,,,""
|
918 |
+
917,"a","a",7240,2,2010,0,,,""
|
919 |
+
918,"a","c",18710,4,2015,0,,,""
|
920 |
+
919,"a","a",2620,,,1,45,2009,"Feb,May,Aug,Nov"
|
921 |
+
920,"a","a",850,2,2012,1,40,2014,"Jan,Apr,Jul,Oct"
|
922 |
+
921,"a","a",840,9,2006,0,,,""
|
923 |
+
922,"d","a",2110,3,2006,0,,,""
|
924 |
+
923,"a","a",280,9,2008,0,,,""
|
925 |
+
924,"a","a",6420,4,2011,1,1,2012,"Jan,Apr,Jul,Oct"
|
926 |
+
925,"c","a",470,3,2007,1,1,2012,"Jan,Apr,Jul,Oct"
|
927 |
+
926,"d","c",5150,3,2011,1,13,2010,"Jan,Apr,Jul,Oct"
|
928 |
+
927,"a","a",480,,,0,,,""
|
929 |
+
928,"d","c",1090,,,1,31,2013,"Feb,May,Aug,Nov"
|
930 |
+
929,"a","c",4820,9,2013,0,,,""
|
931 |
+
930,"a","a",70,,,0,,,""
|
932 |
+
931,"a","c",1480,9,2011,1,1,2012,"Jan,Apr,Jul,Oct"
|
933 |
+
932,"a","a",15700,,,1,13,2010,"Jan,Apr,Jul,Oct"
|
934 |
+
933,"a","c",6270,2,2005,0,,,""
|
935 |
+
934,"a","c",5460,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
936 |
+
935,"a","c",22350,6,2010,0,,,""
|
937 |
+
936,"a","a",580,2,2008,0,,,""
|
938 |
+
937,"d","a",2810,,,1,10,2014,"Jan,Apr,Jul,Oct"
|
939 |
+
938,"a","a",2820,9,2009,0,,,""
|
940 |
+
939,"d","a",1340,,,0,,,""
|
941 |
+
940,"d","c",6470,9,2012,0,,,""
|
942 |
+
941,"a","a",1200,12,2011,1,31,2013,"Jan,Apr,Jul,Oct"
|
943 |
+
942,"d","c",6860,,,1,18,2011,"Jan,Apr,Jul,Oct"
|
944 |
+
943,"d","c",18020,,,0,,,""
|
945 |
+
944,"c","a",1670,7,2015,0,,,""
|
946 |
+
945,"a","c",12480,3,2011,0,,,""
|
947 |
+
946,"a","a",2220,12,2011,1,14,2015,"Jan,Apr,Jul,Oct"
|
948 |
+
947,"a","a",460,3,2014,1,13,2010,"Jan,Apr,Jul,Oct"
|
949 |
+
948,"b","b",1430,,,0,,,""
|
950 |
+
949,"a","a",870,3,2006,0,,,""
|
951 |
+
950,"a","a",8460,11,1994,0,,,""
|
952 |
+
951,"d","c",710,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
953 |
+
952,"d","c",6300,10,2013,0,,,""
|
954 |
+
953,"a","a",19830,4,2006,1,22,2011,"Mar,Jun,Sept,Dec"
|
955 |
+
954,"a","a",390,2,2013,1,10,2014,"Jan,Apr,Jul,Oct"
|
956 |
+
955,"d","c",1690,7,2009,1,36,2013,"Mar,Jun,Sept,Dec"
|
957 |
+
956,"a","a",2330,10,2014,1,18,2011,"Feb,May,Aug,Nov"
|
958 |
+
957,"d","c",1420,11,2012,0,,,""
|
959 |
+
958,"a","a",440,11,2013,0,,,""
|
960 |
+
959,"a","c",1060,12,2005,0,,,""
|
961 |
+
960,"d","a",8990,,,1,31,2009,"Feb,May,Aug,Nov"
|
962 |
+
961,"d","c",9430,,,0,,,""
|
963 |
+
962,"c","a",260,,,0,,,""
|
964 |
+
963,"a","c",23620,11,2013,0,,,""
|
965 |
+
964,"a","a",270,,,1,5,2013,"Feb,May,Aug,Nov"
|
966 |
+
965,"a","c",110,,,0,,,""
|
967 |
+
966,"a","a",760,2,2008,0,,,""
|
968 |
+
967,"a","c",3560,9,2013,1,36,2013,"Jan,Apr,Jul,Oct"
|
969 |
+
968,"c","a",1190,,,0,,,""
|
970 |
+
969,"a","c",600,11,1999,1,10,2013,"Jan,Apr,Jul,Oct"
|
971 |
+
970,"a","a",910,12,2014,1,37,2009,"Jan,Apr,Jul,Oct"
|
972 |
+
971,"c","a",1140,5,2011,1,14,2012,"Mar,Jun,Sept,Dec"
|
973 |
+
972,"a","a",14960,,,0,,,""
|
974 |
+
973,"d","c",330,,,1,28,2012,"Jan,Apr,Jul,Oct"
|
975 |
+
974,"a","a",150,3,2011,1,40,2014,"Jan,Apr,Jul,Oct"
|
976 |
+
975,"a","c",9630,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
977 |
+
976,"a","a",4180,,,0,,,""
|
978 |
+
977,"a","a",520,9,2005,1,13,2010,"Jan,Apr,Jul,Oct"
|
979 |
+
978,"c","c",3890,,,0,,,""
|
980 |
+
979,"a","c",2270,11,2005,1,14,2011,"Jan,Apr,Jul,Oct"
|
981 |
+
980,"a","a",4420,9,2005,0,,,""
|
982 |
+
981,"d","c",2620,11,2002,0,,,""
|
983 |
+
982,"d","a",21930,,,0,,,""
|
984 |
+
983,"a","a",40,3,2014,1,1,2014,"Jan,Apr,Jul,Oct"
|
985 |
+
984,"c","a",440,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
986 |
+
985,"c","c",490,5,2007,1,13,2010,"Jan,Apr,Jul,Oct"
|
987 |
+
986,"a","a",620,10,2014,1,18,2014,"Feb,May,Aug,Nov"
|
988 |
+
987,"c","a",1690,6,2007,0,,,""
|
989 |
+
988,"a","a",30,11,2012,0,,,""
|
990 |
+
989,"a","a",1640,6,2006,1,40,2011,"Jan,Apr,Jul,Oct"
|
991 |
+
990,"d","a",20930,,,0,,,""
|
992 |
+
991,"a","a",1010,,,0,,,""
|
993 |
+
992,"a","a",2480,7,1990,0,,,""
|
994 |
+
993,"d","c",3460,10,2013,1,10,2014,"Jan,Apr,Jul,Oct"
|
995 |
+
994,"a","a",2290,7,2011,1,1,2012,"Jan,Apr,Jul,Oct"
|
996 |
+
995,"d","a",6560,12,2013,0,,,""
|
997 |
+
996,"c","a",2870,7,2015,1,13,2010,"Jan,Apr,Jul,Oct"
|
998 |
+
997,"d","c",5840,7,2010,1,37,2009,"Jan,Apr,Jul,Oct"
|
999 |
+
998,"a","a",780,9,2005,1,5,2013,"Feb,May,Aug,Nov"
|
1000 |
+
999,"d","c",15140,2,2002,1,37,2009,"Jan,Apr,Jul,Oct"
|
1001 |
+
1000,"a","c",2230,5,2009,1,40,2014,"Jan,Apr,Jul,Oct"
|
1002 |
+
1001,"c","a",19640,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
1003 |
+
1002,"d","c",1130,11,2008,0,,,""
|
1004 |
+
1003,"a","a",170,7,2013,1,27,2013,"Jan,Apr,Jul,Oct"
|
1005 |
+
1004,"d","c",970,,,1,9,2011,"Mar,Jun,Sept,Dec"
|
1006 |
+
1005,"a","a",6480,,,0,,,""
|
1007 |
+
1006,"c","c",3890,11,2006,1,5,2013,"Feb,May,Aug,Nov"
|
1008 |
+
1007,"c","c",4180,9,2012,0,,,""
|
1009 |
+
1008,"a","c",30,9,2010,0,,,""
|
1010 |
+
1009,"a","a",230,7,2004,1,10,2014,"Jan,Apr,Jul,Oct"
|
1011 |
+
1010,"d","c",4610,6,2010,1,18,2010,"Feb,May,Aug,Nov"
|
1012 |
+
1011,"a","c",490,9,2012,1,18,2011,"Feb,May,Aug,Nov"
|
1013 |
+
1012,"d","c",6330,6,2004,1,39,2010,"Jan,Apr,Jul,Oct"
|
1014 |
+
1013,"a","a",630,2,2015,1,31,2013,"Feb,May,Aug,Nov"
|
1015 |
+
1014,"a","c",210,,,1,31,2013,"Jan,Apr,Jul,Oct"
|
1016 |
+
1015,"d","c",9910,12,2010,1,9,2011,"Mar,Jun,Sept,Dec"
|
1017 |
+
1016,"c","c",550,,,1,35,2010,"Mar,Jun,Sept,Dec"
|
1018 |
+
1017,"c","a",110,11,2008,0,,,""
|
1019 |
+
1018,"c","c",140,9,2012,0,,,""
|
1020 |
+
1019,"d","c",2740,7,2014,1,13,2010,"Jan,Apr,Jul,Oct"
|
1021 |
+
1020,"a","a",40,8,2015,0,,,""
|
1022 |
+
1021,"a","a",1080,5,2011,0,,,""
|
1023 |
+
1022,"a","c",1520,,,0,,,""
|
1024 |
+
1023,"c","a",3740,2,2002,1,14,2011,"Jan,Apr,Jul,Oct"
|
1025 |
+
1024,"c","c",1990,1,2012,0,,,""
|
1026 |
+
1025,"a","a",720,11,2009,0,,,""
|
1027 |
+
1026,"c","a",450,6,2011,1,48,2012,"Mar,Jun,Sept,Dec"
|
1028 |
+
1027,"a","c",190,6,2008,1,40,2011,"Jan,Apr,Jul,Oct"
|
1029 |
+
1028,"a","a",150,,,1,31,2013,"Jan,Apr,Jul,Oct"
|
1030 |
+
1029,"a","a",1590,3,2006,0,,,""
|
1031 |
+
1030,"a","a",36410,4,2008,0,,,""
|
1032 |
+
1031,"d","a",590,5,2001,0,,,""
|
1033 |
+
1032,"d","c",270,2,2013,1,40,2012,"Jan,Apr,Jul,Oct"
|
1034 |
+
1033,"a","a",7680,3,2006,0,,,""
|
1035 |
+
1034,"a","a",13750,4,2015,0,,,""
|
1036 |
+
1035,"a","a",27150,,,0,,,""
|
1037 |
+
1036,"d","c",9560,,,1,36,2013,"Jan,Apr,Jul,Oct"
|
1038 |
+
1037,"a","c",150,,,0,,,""
|
1039 |
+
1038,"d","a",17290,10,2013,0,,,""
|
1040 |
+
1039,"a","c",70,6,1990,1,22,2012,"Mar,Jun,Sept,Dec"
|
1041 |
+
1040,"a","a",4030,2,2013,1,10,2014,"Jan,Apr,Jul,Oct"
|
1042 |
+
1041,"c","a",1600,8,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
1043 |
+
1042,"a","a",3440,,,1,31,2013,"Feb,May,Aug,Nov"
|
1044 |
+
1043,"c","a",420,3,2006,0,,,""
|
1045 |
+
1044,"c","a",240,4,2015,1,13,2010,"Jan,Apr,Jul,Oct"
|
1046 |
+
1045,"a","c",26990,12,2013,0,,,""
|
1047 |
+
1046,"d","c",29070,4,2005,0,,,""
|
1048 |
+
1047,"a","a",3750,,,1,45,2009,"Feb,May,Aug,Nov"
|
1049 |
+
1048,"d","c",1860,9,2012,1,40,2012,"Jan,Apr,Jul,Oct"
|
1050 |
+
1049,"a","a",370,7,2012,1,14,2011,"Jan,Apr,Jul,Oct"
|
1051 |
+
1050,"d","c",13170,8,2014,1,9,2011,"Mar,Jun,Sept,Dec"
|
1052 |
+
1051,"c","a",200,7,1998,1,1,2012,"Jan,Apr,Jul,Oct"
|
1053 |
+
1052,"a","c",5080,,,1,31,2013,"Feb,May,Aug,Nov"
|
1054 |
+
1053,"a","a",1710,7,2015,0,,,""
|
1055 |
+
1054,"a","c",13190,,,1,45,2013,"Feb,May,Aug,Nov"
|
1056 |
+
1055,"c","a",1980,4,2009,0,,,""
|
1057 |
+
1056,"d","c",5350,,,1,40,2012,"Jan,Apr,Jul,Oct"
|
1058 |
+
1057,"d","c",3230,11,2011,0,,,""
|
1059 |
+
1058,"a","c",180,,,1,35,2010,"Mar,Jun,Sept,Dec"
|
1060 |
+
1059,"c","a",3380,4,2013,0,,,""
|
1061 |
+
1060,"a","c",3430,,,1,31,2013,"Feb,May,Aug,Nov"
|
1062 |
+
1061,"d","c",8110,,,0,,,""
|
1063 |
+
1062,"d","a",190,9,2012,1,40,2012,"Feb,May,Aug,Nov"
|
1064 |
+
1063,"a","c",6250,,,0,,,""
|
1065 |
+
1064,"a","c",420,,,0,,,""
|
1066 |
+
1065,"a","a",1290,,,1,35,2011,"Mar,Jun,Sept,Dec"
|
1067 |
+
1066,"a","a",3350,,,0,,,""
|
1068 |
+
1067,"d","c",12020,7,2009,0,,,""
|
1069 |
+
1068,"d","c",5010,,,1,5,2013,"Jan,Apr,Jul,Oct"
|
1070 |
+
1069,"a","c",18050,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
1071 |
+
1070,"c","c",400,10,2008,0,,,""
|
1072 |
+
1071,"a","a",820,3,2012,1,35,2012,"Mar,Jun,Sept,Dec"
|
1073 |
+
1072,"a","c",5380,8,2015,1,5,2010,"Feb,May,Aug,Nov"
|
1074 |
+
1073,"a","c",1710,,,1,44,2012,"Jan,Apr,Jul,Oct"
|
1075 |
+
1074,"c","c",3330,10,2001,1,14,2011,"Jan,Apr,Jul,Oct"
|
1076 |
+
1075,"a","c",1410,10,2013,0,,,""
|
1077 |
+
1076,"a","c",90,,,1,1,2013,"Jan,Apr,Jul,Oct"
|
1078 |
+
1077,"a","a",3750,11,2001,1,35,2010,"Mar,Jun,Sept,Dec"
|
1079 |
+
1078,"d","c",670,,,1,40,2011,"Jan,Apr,Jul,Oct"
|
1080 |
+
1079,"a","a",16680,,,1,37,2009,"Jan,Apr,Jul,Oct"
|
1081 |
+
1080,"a","a",2410,,,1,40,2014,"Jan,Apr,Jul,Oct"
|
1082 |
+
1081,"b","a",400,3,2006,0,,,""
|
1083 |
+
1082,"c","a",440,4,2002,0,,,""
|
1084 |
+
1083,"d","c",11540,,,1,5,2013,"Feb,May,Aug,Nov"
|
1085 |
+
1084,"a","a",190,,,1,13,2010,"Jan,Apr,Jul,Oct"
|
1086 |
+
1085,"c","a",4030,2,2015,0,,,""
|
1087 |
+
1086,"a","a",180,11,2013,1,18,2011,"Feb,May,Aug,Nov"
|
1088 |
+
1087,"d","c",2210,11,2011,0,,,""
|
1089 |
+
1088,"a","a",4300,3,2009,1,27,2013,"Jan,Apr,Jul,Oct"
|
1090 |
+
1089,"d","a",5220,5,2009,0,,,""
|
1091 |
+
1090,"a","a",330,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
1092 |
+
1091,"a","c",9990,,,0,,,""
|
1093 |
+
1092,"a","a",300,7,2000,1,40,2014,"Jan,Apr,Jul,Oct"
|
1094 |
+
1093,"c","c",10450,6,2009,0,,,""
|
1095 |
+
1094,"d","a",2380,3,2013,1,40,2014,"Jan,Apr,Jul,Oct"
|
1096 |
+
1095,"a","a",690,6,2007,1,14,2011,"Jan,Apr,Jul,Oct"
|
1097 |
+
1096,"a","c",1130,,,1,10,2014,"Mar,Jun,Sept,Dec"
|
1098 |
+
1097,"b","b",720,3,2002,0,,,""
|
1099 |
+
1098,"a","a",1830,11,2004,0,,,""
|
1100 |
+
1099,"a","c",200,4,2013,1,14,2013,"Jan,Apr,Jul,Oct"
|
1101 |
+
1100,"a","a",540,,,1,14,2011,"Jan,Apr,Jul,Oct"
|
1102 |
+
1101,"d","c",4060,9,2012,0,,,""
|
1103 |
+
1102,"a","a",850,11,2012,1,40,2014,"Jan,Apr,Jul,Oct"
|
1104 |
+
1103,"d","c",1340,10,2006,1,5,2013,"Feb,May,Aug,Nov"
|
1105 |
+
1104,"d","a",260,2,2012,1,14,2011,"Jan,Apr,Jul,Oct"
|
1106 |
+
1105,"c","c",330,11,2008,1,5,2013,"Feb,May,Aug,Nov"
|
1107 |
+
1106,"a","c",5330,9,2011,1,31,2013,"Jan,Apr,Jul,Oct"
|
1108 |
+
1107,"a","a",1400,6,2012,1,13,2010,"Jan,Apr,Jul,Oct"
|
1109 |
+
1108,"a","a",540,4,2004,0,,,""
|
1110 |
+
1109,"c","a",3490,4,2011,1,22,2012,"Jan,Apr,Jul,Oct"
|
1111 |
+
1110,"c","c",900,9,2010,0,,,""
|
1112 |
+
1111,"a","a",1900,6,2014,1,31,2013,"Jan,Apr,Jul,Oct"
|
1113 |
+
1112,"c","c",1880,4,2006,0,,,""
|
1114 |
+
1113,"a","c",9260,,,0,,,""
|
1115 |
+
1114,"a","c",870,,,0,,,""
|
1116 |
+
1115,"d","c",5350,,,1,22,2012,"Mar,Jun,Sept,Dec"
|
Notebooks/01 copy.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:906fe9e08e8405ddb727e310a9b4191ffd607831c2c29e1d978778bbf3ed948e
|
3 |
+
size 20758656
|
Notebooks/01.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:906fe9e08e8405ddb727e310a9b4191ffd607831c2c29e1d978778bbf3ed948e
|
3 |
+
size 20758656
|
Notebooks/SalesPrediction_EDA.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Notebooks/SalesPrediction_ML.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d55ad0de185923b6a16d3c7c06bf59c155a6ac0a33e8aa85f5b52969c5556e57
|
3 |
+
size 19598159
|
Notebooks/pipeline.ipynb
ADDED
@@ -0,0 +1,1924 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"<h1> ----- PIPELINE NOTEBOOK ----- </h1>"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 2,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import numpy as np\n",
|
17 |
+
"import pandas as pd\n",
|
18 |
+
"from sklearn.pipeline import Pipeline\n",
|
19 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
20 |
+
"from sklearn.preprocessing import OneHotEncoder\n",
|
21 |
+
"from xgboost import XGBRegressor\n",
|
22 |
+
"\n",
|
23 |
+
"from sklearn.compose import ColumnTransformer\n",
|
24 |
+
"\n",
|
25 |
+
"from sklearn import set_config"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"data": {
|
35 |
+
"text/html": [
|
36 |
+
"<div>\n",
|
37 |
+
"<style scoped>\n",
|
38 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
39 |
+
" vertical-align: middle;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe tbody tr th {\n",
|
43 |
+
" vertical-align: top;\n",
|
44 |
+
" }\n",
|
45 |
+
"\n",
|
46 |
+
" .dataframe thead th {\n",
|
47 |
+
" text-align: right;\n",
|
48 |
+
" }\n",
|
49 |
+
"</style>\n",
|
50 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
51 |
+
" <thead>\n",
|
52 |
+
" <tr style=\"text-align: right;\">\n",
|
53 |
+
" <th></th>\n",
|
54 |
+
" <th>Unnamed: 0</th>\n",
|
55 |
+
" <th>Store</th>\n",
|
56 |
+
" <th>DayOfWeek</th>\n",
|
57 |
+
" <th>Date</th>\n",
|
58 |
+
" <th>Sales</th>\n",
|
59 |
+
" <th>Customers</th>\n",
|
60 |
+
" <th>Promo</th>\n",
|
61 |
+
" <th>StateHoliday</th>\n",
|
62 |
+
" <th>SchoolHoliday</th>\n",
|
63 |
+
" <th>StoreType</th>\n",
|
64 |
+
" <th>Assortment</th>\n",
|
65 |
+
" <th>CompetitionDistance</th>\n",
|
66 |
+
" <th>CompetitionOpenSinceMonth</th>\n",
|
67 |
+
" <th>CompetitionOpenSinceYear</th>\n",
|
68 |
+
" <th>Promo2</th>\n",
|
69 |
+
" <th>Promo2SinceWeek</th>\n",
|
70 |
+
" <th>Promo2SinceYear</th>\n",
|
71 |
+
" <th>PromoInterval</th>\n",
|
72 |
+
" </tr>\n",
|
73 |
+
" </thead>\n",
|
74 |
+
" <tbody>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>0</th>\n",
|
77 |
+
" <td>0</td>\n",
|
78 |
+
" <td>1</td>\n",
|
79 |
+
" <td>5</td>\n",
|
80 |
+
" <td>2015-07-31</td>\n",
|
81 |
+
" <td>5263</td>\n",
|
82 |
+
" <td>555</td>\n",
|
83 |
+
" <td>1</td>\n",
|
84 |
+
" <td>0</td>\n",
|
85 |
+
" <td>1</td>\n",
|
86 |
+
" <td>Large Store</td>\n",
|
87 |
+
" <td>basic</td>\n",
|
88 |
+
" <td>1270</td>\n",
|
89 |
+
" <td>9</td>\n",
|
90 |
+
" <td>2008</td>\n",
|
91 |
+
" <td>0</td>\n",
|
92 |
+
" <td>0</td>\n",
|
93 |
+
" <td>0</td>\n",
|
94 |
+
" <td>0</td>\n",
|
95 |
+
" </tr>\n",
|
96 |
+
" <tr>\n",
|
97 |
+
" <th>1</th>\n",
|
98 |
+
" <td>1</td>\n",
|
99 |
+
" <td>2</td>\n",
|
100 |
+
" <td>5</td>\n",
|
101 |
+
" <td>2015-07-31</td>\n",
|
102 |
+
" <td>6064</td>\n",
|
103 |
+
" <td>625</td>\n",
|
104 |
+
" <td>1</td>\n",
|
105 |
+
" <td>0</td>\n",
|
106 |
+
" <td>1</td>\n",
|
107 |
+
" <td>Small Shop</td>\n",
|
108 |
+
" <td>basic</td>\n",
|
109 |
+
" <td>570</td>\n",
|
110 |
+
" <td>11</td>\n",
|
111 |
+
" <td>2007</td>\n",
|
112 |
+
" <td>1</td>\n",
|
113 |
+
" <td>13</td>\n",
|
114 |
+
" <td>2010</td>\n",
|
115 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
116 |
+
" </tr>\n",
|
117 |
+
" <tr>\n",
|
118 |
+
" <th>2</th>\n",
|
119 |
+
" <td>2</td>\n",
|
120 |
+
" <td>3</td>\n",
|
121 |
+
" <td>5</td>\n",
|
122 |
+
" <td>2015-07-31</td>\n",
|
123 |
+
" <td>8314</td>\n",
|
124 |
+
" <td>821</td>\n",
|
125 |
+
" <td>1</td>\n",
|
126 |
+
" <td>0</td>\n",
|
127 |
+
" <td>1</td>\n",
|
128 |
+
" <td>Small Shop</td>\n",
|
129 |
+
" <td>basic</td>\n",
|
130 |
+
" <td>14130</td>\n",
|
131 |
+
" <td>12</td>\n",
|
132 |
+
" <td>2006</td>\n",
|
133 |
+
" <td>1</td>\n",
|
134 |
+
" <td>14</td>\n",
|
135 |
+
" <td>2011</td>\n",
|
136 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
137 |
+
" </tr>\n",
|
138 |
+
" <tr>\n",
|
139 |
+
" <th>3</th>\n",
|
140 |
+
" <td>3</td>\n",
|
141 |
+
" <td>4</td>\n",
|
142 |
+
" <td>5</td>\n",
|
143 |
+
" <td>2015-07-31</td>\n",
|
144 |
+
" <td>13995</td>\n",
|
145 |
+
" <td>1498</td>\n",
|
146 |
+
" <td>1</td>\n",
|
147 |
+
" <td>0</td>\n",
|
148 |
+
" <td>1</td>\n",
|
149 |
+
" <td>Large Store</td>\n",
|
150 |
+
" <td>extended</td>\n",
|
151 |
+
" <td>620</td>\n",
|
152 |
+
" <td>9</td>\n",
|
153 |
+
" <td>2009</td>\n",
|
154 |
+
" <td>0</td>\n",
|
155 |
+
" <td>0</td>\n",
|
156 |
+
" <td>0</td>\n",
|
157 |
+
" <td>0</td>\n",
|
158 |
+
" </tr>\n",
|
159 |
+
" <tr>\n",
|
160 |
+
" <th>4</th>\n",
|
161 |
+
" <td>4</td>\n",
|
162 |
+
" <td>5</td>\n",
|
163 |
+
" <td>5</td>\n",
|
164 |
+
" <td>2015-07-31</td>\n",
|
165 |
+
" <td>4822</td>\n",
|
166 |
+
" <td>559</td>\n",
|
167 |
+
" <td>1</td>\n",
|
168 |
+
" <td>0</td>\n",
|
169 |
+
" <td>1</td>\n",
|
170 |
+
" <td>Small Shop</td>\n",
|
171 |
+
" <td>basic</td>\n",
|
172 |
+
" <td>29910</td>\n",
|
173 |
+
" <td>4</td>\n",
|
174 |
+
" <td>2015</td>\n",
|
175 |
+
" <td>0</td>\n",
|
176 |
+
" <td>0</td>\n",
|
177 |
+
" <td>0</td>\n",
|
178 |
+
" <td>0</td>\n",
|
179 |
+
" </tr>\n",
|
180 |
+
" </tbody>\n",
|
181 |
+
"</table>\n",
|
182 |
+
"</div>"
|
183 |
+
],
|
184 |
+
"text/plain": [
|
185 |
+
" Unnamed: 0 Store DayOfWeek Date Sales Customers Promo \\\n",
|
186 |
+
"0 0 1 5 2015-07-31 5263 555 1 \n",
|
187 |
+
"1 1 2 5 2015-07-31 6064 625 1 \n",
|
188 |
+
"2 2 3 5 2015-07-31 8314 821 1 \n",
|
189 |
+
"3 3 4 5 2015-07-31 13995 1498 1 \n",
|
190 |
+
"4 4 5 5 2015-07-31 4822 559 1 \n",
|
191 |
+
"\n",
|
192 |
+
" StateHoliday SchoolHoliday StoreType Assortment CompetitionDistance \\\n",
|
193 |
+
"0 0 1 Large Store basic 1270 \n",
|
194 |
+
"1 0 1 Small Shop basic 570 \n",
|
195 |
+
"2 0 1 Small Shop basic 14130 \n",
|
196 |
+
"3 0 1 Large Store extended 620 \n",
|
197 |
+
"4 0 1 Small Shop basic 29910 \n",
|
198 |
+
"\n",
|
199 |
+
" CompetitionOpenSinceMonth CompetitionOpenSinceYear Promo2 \\\n",
|
200 |
+
"0 9 2008 0 \n",
|
201 |
+
"1 11 2007 1 \n",
|
202 |
+
"2 12 2006 1 \n",
|
203 |
+
"3 9 2009 0 \n",
|
204 |
+
"4 4 2015 0 \n",
|
205 |
+
"\n",
|
206 |
+
" Promo2SinceWeek Promo2SinceYear PromoInterval \n",
|
207 |
+
"0 0 0 0 \n",
|
208 |
+
"1 13 2010 Jan,Apr,Jul,Oct \n",
|
209 |
+
"2 14 2011 Jan,Apr,Jul,Oct \n",
|
210 |
+
"3 0 0 0 \n",
|
211 |
+
"4 0 0 0 "
|
212 |
+
]
|
213 |
+
},
|
214 |
+
"execution_count": 3,
|
215 |
+
"metadata": {},
|
216 |
+
"output_type": "execute_result"
|
217 |
+
}
|
218 |
+
],
|
219 |
+
"source": [
|
220 |
+
"df = pd.read_csv(r\"../Dataset/Rossmann_Cleaned_data.csv\")\n",
|
221 |
+
"df.head()"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": 4,
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [
|
229 |
+
{
|
230 |
+
"data": {
|
231 |
+
"text/html": [
|
232 |
+
"<div>\n",
|
233 |
+
"<style scoped>\n",
|
234 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
235 |
+
" vertical-align: middle;\n",
|
236 |
+
" }\n",
|
237 |
+
"\n",
|
238 |
+
" .dataframe tbody tr th {\n",
|
239 |
+
" vertical-align: top;\n",
|
240 |
+
" }\n",
|
241 |
+
"\n",
|
242 |
+
" .dataframe thead th {\n",
|
243 |
+
" text-align: right;\n",
|
244 |
+
" }\n",
|
245 |
+
"</style>\n",
|
246 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
247 |
+
" <thead>\n",
|
248 |
+
" <tr style=\"text-align: right;\">\n",
|
249 |
+
" <th></th>\n",
|
250 |
+
" <th>PromoInterval</th>\n",
|
251 |
+
" <th>StoreType</th>\n",
|
252 |
+
" <th>Assortment</th>\n",
|
253 |
+
" <th>StateHoliday</th>\n",
|
254 |
+
" <th>Store</th>\n",
|
255 |
+
" <th>Customers</th>\n",
|
256 |
+
" <th>Promo</th>\n",
|
257 |
+
" <th>SchoolHoliday</th>\n",
|
258 |
+
" <th>CompetitionDistance</th>\n",
|
259 |
+
" <th>CompetitionOpenSinceMonth</th>\n",
|
260 |
+
" <th>CompetitionOpenSinceYear</th>\n",
|
261 |
+
" <th>Sales</th>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" </thead>\n",
|
264 |
+
" <tbody>\n",
|
265 |
+
" <tr>\n",
|
266 |
+
" <th>0</th>\n",
|
267 |
+
" <td>0</td>\n",
|
268 |
+
" <td>Large Store</td>\n",
|
269 |
+
" <td>basic</td>\n",
|
270 |
+
" <td>0</td>\n",
|
271 |
+
" <td>1</td>\n",
|
272 |
+
" <td>555</td>\n",
|
273 |
+
" <td>1</td>\n",
|
274 |
+
" <td>1</td>\n",
|
275 |
+
" <td>1270</td>\n",
|
276 |
+
" <td>9</td>\n",
|
277 |
+
" <td>2008</td>\n",
|
278 |
+
" <td>5263</td>\n",
|
279 |
+
" </tr>\n",
|
280 |
+
" <tr>\n",
|
281 |
+
" <th>1</th>\n",
|
282 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
283 |
+
" <td>Small Shop</td>\n",
|
284 |
+
" <td>basic</td>\n",
|
285 |
+
" <td>0</td>\n",
|
286 |
+
" <td>2</td>\n",
|
287 |
+
" <td>625</td>\n",
|
288 |
+
" <td>1</td>\n",
|
289 |
+
" <td>1</td>\n",
|
290 |
+
" <td>570</td>\n",
|
291 |
+
" <td>11</td>\n",
|
292 |
+
" <td>2007</td>\n",
|
293 |
+
" <td>6064</td>\n",
|
294 |
+
" </tr>\n",
|
295 |
+
" <tr>\n",
|
296 |
+
" <th>2</th>\n",
|
297 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
298 |
+
" <td>Small Shop</td>\n",
|
299 |
+
" <td>basic</td>\n",
|
300 |
+
" <td>0</td>\n",
|
301 |
+
" <td>3</td>\n",
|
302 |
+
" <td>821</td>\n",
|
303 |
+
" <td>1</td>\n",
|
304 |
+
" <td>1</td>\n",
|
305 |
+
" <td>14130</td>\n",
|
306 |
+
" <td>12</td>\n",
|
307 |
+
" <td>2006</td>\n",
|
308 |
+
" <td>8314</td>\n",
|
309 |
+
" </tr>\n",
|
310 |
+
" <tr>\n",
|
311 |
+
" <th>3</th>\n",
|
312 |
+
" <td>0</td>\n",
|
313 |
+
" <td>Large Store</td>\n",
|
314 |
+
" <td>extended</td>\n",
|
315 |
+
" <td>0</td>\n",
|
316 |
+
" <td>4</td>\n",
|
317 |
+
" <td>1498</td>\n",
|
318 |
+
" <td>1</td>\n",
|
319 |
+
" <td>1</td>\n",
|
320 |
+
" <td>620</td>\n",
|
321 |
+
" <td>9</td>\n",
|
322 |
+
" <td>2009</td>\n",
|
323 |
+
" <td>13995</td>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" <tr>\n",
|
326 |
+
" <th>4</th>\n",
|
327 |
+
" <td>0</td>\n",
|
328 |
+
" <td>Small Shop</td>\n",
|
329 |
+
" <td>basic</td>\n",
|
330 |
+
" <td>0</td>\n",
|
331 |
+
" <td>5</td>\n",
|
332 |
+
" <td>559</td>\n",
|
333 |
+
" <td>1</td>\n",
|
334 |
+
" <td>1</td>\n",
|
335 |
+
" <td>29910</td>\n",
|
336 |
+
" <td>4</td>\n",
|
337 |
+
" <td>2015</td>\n",
|
338 |
+
" <td>4822</td>\n",
|
339 |
+
" </tr>\n",
|
340 |
+
" </tbody>\n",
|
341 |
+
"</table>\n",
|
342 |
+
"</div>"
|
343 |
+
],
|
344 |
+
"text/plain": [
|
345 |
+
" PromoInterval StoreType Assortment StateHoliday Store Customers \\\n",
|
346 |
+
"0 0 Large Store basic 0 1 555 \n",
|
347 |
+
"1 Jan,Apr,Jul,Oct Small Shop basic 0 2 625 \n",
|
348 |
+
"2 Jan,Apr,Jul,Oct Small Shop basic 0 3 821 \n",
|
349 |
+
"3 0 Large Store extended 0 4 1498 \n",
|
350 |
+
"4 0 Small Shop basic 0 5 559 \n",
|
351 |
+
"\n",
|
352 |
+
" Promo SchoolHoliday CompetitionDistance CompetitionOpenSinceMonth \\\n",
|
353 |
+
"0 1 1 1270 9 \n",
|
354 |
+
"1 1 1 570 11 \n",
|
355 |
+
"2 1 1 14130 12 \n",
|
356 |
+
"3 1 1 620 9 \n",
|
357 |
+
"4 1 1 29910 4 \n",
|
358 |
+
"\n",
|
359 |
+
" CompetitionOpenSinceYear Sales \n",
|
360 |
+
"0 2008 5263 \n",
|
361 |
+
"1 2007 6064 \n",
|
362 |
+
"2 2006 8314 \n",
|
363 |
+
"3 2009 13995 \n",
|
364 |
+
"4 2015 4822 "
|
365 |
+
]
|
366 |
+
},
|
367 |
+
"execution_count": 4,
|
368 |
+
"metadata": {},
|
369 |
+
"output_type": "execute_result"
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"source": [
|
373 |
+
"df = df[[\"PromoInterval\",\"StoreType\",\"Assortment\",\"StateHoliday\",\"Store\",\"Customers\",\"Promo\",\"SchoolHoliday\",\"CompetitionDistance\",\"CompetitionOpenSinceMonth\",\"CompetitionOpenSinceYear\",\"Sales\"]]\n",
|
374 |
+
"df.head()"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"execution_count": 10,
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [
|
382 |
+
{
|
383 |
+
"name": "stdout",
|
384 |
+
"output_type": "stream",
|
385 |
+
"text": [
|
386 |
+
"8\n",
|
387 |
+
"7388\n"
|
388 |
+
]
|
389 |
+
}
|
390 |
+
],
|
391 |
+
"source": [
|
392 |
+
"print(df[\"Customers\"].min())\n",
|
393 |
+
"print(df[\"Customers\"].max())"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": 11,
|
399 |
+
"metadata": {},
|
400 |
+
"outputs": [
|
401 |
+
{
|
402 |
+
"name": "stdout",
|
403 |
+
"output_type": "stream",
|
404 |
+
"text": [
|
405 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
406 |
+
"RangeIndex: 844338 entries, 0 to 844337\n",
|
407 |
+
"Data columns (total 12 columns):\n",
|
408 |
+
" # Column Non-Null Count Dtype \n",
|
409 |
+
"--- ------ -------------- ----- \n",
|
410 |
+
" 0 PromoInterval 844338 non-null object\n",
|
411 |
+
" 1 StoreType 844338 non-null object\n",
|
412 |
+
" 2 Assortment 844338 non-null object\n",
|
413 |
+
" 3 StateHoliday 844338 non-null int64 \n",
|
414 |
+
" 4 Store 844338 non-null int64 \n",
|
415 |
+
" 5 Customers 844338 non-null int64 \n",
|
416 |
+
" 6 Promo 844338 non-null int64 \n",
|
417 |
+
" 7 SchoolHoliday 844338 non-null int64 \n",
|
418 |
+
" 8 CompetitionDistance 844338 non-null int64 \n",
|
419 |
+
" 9 CompetitionOpenSinceMonth 844338 non-null int64 \n",
|
420 |
+
" 10 CompetitionOpenSinceYear 844338 non-null int64 \n",
|
421 |
+
" 11 Sales 844338 non-null int64 \n",
|
422 |
+
"dtypes: int64(9), object(3)\n",
|
423 |
+
"memory usage: 77.3+ MB\n"
|
424 |
+
]
|
425 |
+
}
|
426 |
+
],
|
427 |
+
"source": [
|
428 |
+
"df.info()"
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"cell_type": "code",
|
433 |
+
"execution_count": 14,
|
434 |
+
"metadata": {},
|
435 |
+
"outputs": [
|
436 |
+
{
|
437 |
+
"data": {
|
438 |
+
"text/plain": [
|
439 |
+
"(844338, 12)"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
"execution_count": 14,
|
443 |
+
"metadata": {},
|
444 |
+
"output_type": "execute_result"
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"source": [
|
448 |
+
"df.shape"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"execution_count": 15,
|
454 |
+
"metadata": {},
|
455 |
+
"outputs": [
|
456 |
+
{
|
457 |
+
"name": "stdout",
|
458 |
+
"output_type": "stream",
|
459 |
+
"text": [
|
460 |
+
"Unique values in PromoInterval: ['0' 'Jan,Apr,Jul,Oct' 'Feb,May,Aug,Nov' 'Mar,Jun,Sept,Dec']\n",
|
461 |
+
"Unique values in StoreType: ['Large Store' 'Small Shop' 'Hypermarket' 'Medium Store']\n",
|
462 |
+
"Unique values in Assortment: ['basic' 'extended' 'extra']\n",
|
463 |
+
"Unique values in StateHoliday: [0 1]\n",
|
464 |
+
"Unique values in Store: [ 1 2 3 ... 1115 876 292]\n",
|
465 |
+
"Unique values in Customers: [ 555 625 821 ... 3900 36 4065]\n",
|
466 |
+
"Unique values in Promo: [1 0]\n",
|
467 |
+
"Unique values in SchoolHoliday: [1 0]\n",
|
468 |
+
"Unique values in CompetitionDistance: [ 1270 570 14130 620 29910 310 24000 7520 2030 3160 960 1070\n",
|
469 |
+
" 1300 4110 3270 50 13840 3240 2340 550 1040 4060 4590 430\n",
|
470 |
+
" 2300 60 1200 2170 40 9800 2910 1320 2240 7660 540 4230\n",
|
471 |
+
" 1090 260 180 1180 290 4880 9710 270 1060 18010 6260 10570\n",
|
472 |
+
" 450 30360 7170 720 6620 420 7340 2840 5540 350 2050 3700\n",
|
473 |
+
" 22560 410 250 1130 4840 17500 2200 1650 330 22440 19960 3510\n",
|
474 |
+
" 3320 7910 2370 22390 2710 11810 1870 480 560 10690 2380 2410\n",
|
475 |
+
" 240 16690 14620 1890 8780 8980 15140 17930 2440 150 5210 390\n",
|
476 |
+
" 6190 1390 1930 2190 3300 46590 7890 1630 20930 4510 5740 680\n",
|
477 |
+
" 3450 3580 2100 2290 3570 58260 16760 1410 760 3370 1350 2000\n",
|
478 |
+
" 2460 900 920 5190 1730 25360 1700 1540 2930 16570 280 8050\n",
|
479 |
+
" 8540 2090 2610 31830 4360 1780 16240 16420 3050 2020 2950 11840\n",
|
480 |
+
" 8530 17110 2970 5340 1480 1160 3720 100 140 12540 980 2640\n",
|
481 |
+
" 110 13090 4130 3770 1250 1710 5800 12610 9670 3560 1860 19360\n",
|
482 |
+
" 850 5760 1470 1100 2770 520 16970 220 3850 4210 6360 20260\n",
|
483 |
+
" 5140 490 5630 380 6870 300 11680 970 15050 4030 8650 190\n",
|
484 |
+
" 3150 640 1640 1000 13530 2920 7930 10180 10800 17410 6680 3840\n",
|
485 |
+
" 13570 4370 5710 1420 320 610 1110 780 6880 710 1310 4660\n",
|
486 |
+
" 70 340 3520 22330 4630 80 27190 210 15340 1140 4580 360\n",
|
487 |
+
" 4520 1450 16180 8480 3640 2960 7840 9260 2320 18640 6970 1220\n",
|
488 |
+
" 2260 1290 1460 2740 800 6540 4150 2325 9580 19840 38630 120\n",
|
489 |
+
" 15430 1950 2470 5100 18660 8740 11300 14160 38710 9000 3140 32330\n",
|
490 |
+
" 8140 8400 13140 10070 3130 370 670 1840 4040 90 10600 1590\n",
|
491 |
+
" 2280 8080 15770 18650 8090 9360 16490 1490 8880 5290 1500 9720\n",
|
492 |
+
" 8970 2060 2890 2040 4490 13620 6470 5870 8250 1970 11120 1150\n",
|
493 |
+
" 15710 160 2140 6630 1800 26130 130 6690 1600 460 2120 4820\n",
|
494 |
+
" 10850 3620 23130 5360 9200 5830 4970 1080 8240 5890 1560 840\n",
|
495 |
+
" 8460 4460 6210 6910 4650 1620 3530 2880 16350 12870 810 30030\n",
|
496 |
+
" 13020 910 3900 2530 500 11400 1510 3970 5780 1850 75860 26450\n",
|
497 |
+
" 3390 34050 1790 44320 4160 10890 3110 20390 5260 5300 5030 14810\n",
|
498 |
+
" 8300 770 1940 7470 2550 2310 14300 2180 14960 660 4680 1740\n",
|
499 |
+
" 1260 5470 2780 1610 990 13080 820 9070 1280 4740 8260 590\n",
|
500 |
+
" 400 11260 20 22490 3330 2510 6900 18610 7160 40860 20620 12920\n",
|
501 |
+
" 18160 5950 4700 600 650 7280 5020 580 8990 3760 2330 4260\n",
|
502 |
+
" 3040 3000 3910 1910 1210 700 1010 4270 1340 2110 9230 1190\n",
|
503 |
+
" 4400 2270 12700 20970 170 7250 1360 440 15720 3340 2540 33060\n",
|
504 |
+
" 17340 8220 10950 10310 18370 2070 2490 730 8940 9910 5440 30\n",
|
505 |
+
" 4080 6920 1170 10740 510 1690 2870 3350 11640 27530 9790 10170\n",
|
506 |
+
" 7780 8040 530 230 7420 2130 14570 200 6930 7860 1680 2700\n",
|
507 |
+
" 17080 15170 3250 4140 2850 20050 18760 15040 3030 3780 830 8550\n",
|
508 |
+
" 7830 2900 11470 4870 12070 3200 8190 15320 3590 5650 5900 17540\n",
|
509 |
+
" 40540 13990 15270 35280 860 1920 5980 6400 11900 4380 6710 1370\n",
|
510 |
+
" 17650 4330 45740 3410 8670 13130 19780 2390 32240 26490 25430 9820\n",
|
511 |
+
" 2630 20640 16990 630 5390 15490 3210 1530 9770 17280 5090 7180\n",
|
512 |
+
" 9560 48330 1760 24770 3870 18620 12770 9640 2590 24530 16210 17570\n",
|
513 |
+
" 7980 3290 6320 5070 3470 2720 14600 6890 27650 8860 5000 1120\n",
|
514 |
+
" 940 14040 4770 3440 3020 6270 21770 740 21370 1020 9680 21810\n",
|
515 |
+
" 10620 3860 29190 4570 7550 12430 19700 4450 18670 19370 18540 3920\n",
|
516 |
+
" 3170 7290 1980 12480 3100 7240 18710 2620 6420 470 5150 15700\n",
|
517 |
+
" 5460 22350 2810 2820 6860 18020 1670 2220 1430 870 6300 19830\n",
|
518 |
+
" 9430 23620 9630 4180 3890 4420 21930 2480 3460 6560 5840 2230\n",
|
519 |
+
" 19640 6480 4610 6330 1520 3740 1990 36410 7680 13750 27150 17290\n",
|
520 |
+
" 26990 29070 3750 13170 5080 13190 5350 3230 3380 3430 8110 6250\n",
|
521 |
+
" 12020 5010 18050 5380 16680 11540 2210 4300 5220 9990 10450 690\n",
|
522 |
+
" 1830 5330 1400 3490 1900 1880 21790]\n",
|
523 |
+
"Unique values in CompetitionOpenSinceMonth: [ 9 11 12 4 10 8 3 6 5 1 2 7]\n",
|
524 |
+
"Unique values in CompetitionOpenSinceYear: [2008 2007 2006 2009 2015 2013 2014 2000 2011 2010 2005 1999 2003 2012\n",
|
525 |
+
" 2004 2002 1961 1995 2001 1990 1994 1900 1998]\n",
|
526 |
+
"Unique values in Sales: [ 5263 6064 8314 ... 660 17815 23303]\n"
|
527 |
+
]
|
528 |
+
}
|
529 |
+
],
|
530 |
+
"source": [
|
531 |
+
"def print_unique_values(dataframe):\n",
|
532 |
+
" for column in dataframe.columns:\n",
|
533 |
+
" unique_values = dataframe[column].unique()\n",
|
534 |
+
" print(f\"Unique values in {column}: {unique_values}\")\n",
|
535 |
+
"\n",
|
536 |
+
"# Example usage:\n",
|
537 |
+
"print_unique_values(df)\n"
|
538 |
+
]
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"cell_type": "code",
|
542 |
+
"execution_count": 16,
|
543 |
+
"metadata": {},
|
544 |
+
"outputs": [],
|
545 |
+
"source": [
|
546 |
+
"X = df.drop(columns = [\"Sales\"])\n",
|
547 |
+
"y = df[\"Sales\"]"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"cell_type": "markdown",
|
552 |
+
"metadata": {},
|
553 |
+
"source": [
|
554 |
+
"## Train Test Split"
|
555 |
+
]
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"cell_type": "code",
|
559 |
+
"execution_count": 17,
|
560 |
+
"metadata": {},
|
561 |
+
"outputs": [
|
562 |
+
{
|
563 |
+
"data": {
|
564 |
+
"text/plain": [
|
565 |
+
"((633253, 11), (211085, 11), (633253,), (211085,))"
|
566 |
+
]
|
567 |
+
},
|
568 |
+
"execution_count": 17,
|
569 |
+
"metadata": {},
|
570 |
+
"output_type": "execute_result"
|
571 |
+
}
|
572 |
+
],
|
573 |
+
"source": [
|
574 |
+
"from sklearn.model_selection import train_test_split\n",
|
575 |
+
"X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=42)\n",
|
576 |
+
"\n",
|
577 |
+
"# Checking the shape after spliting\n",
|
578 |
+
"X_train.shape, X_test.shape, y_train.shape, y_test.shape"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"execution_count": 18,
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [
|
586 |
+
{
|
587 |
+
"data": {
|
588 |
+
"text/html": [
|
589 |
+
"<div>\n",
|
590 |
+
"<style scoped>\n",
|
591 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
592 |
+
" vertical-align: middle;\n",
|
593 |
+
" }\n",
|
594 |
+
"\n",
|
595 |
+
" .dataframe tbody tr th {\n",
|
596 |
+
" vertical-align: top;\n",
|
597 |
+
" }\n",
|
598 |
+
"\n",
|
599 |
+
" .dataframe thead th {\n",
|
600 |
+
" text-align: right;\n",
|
601 |
+
" }\n",
|
602 |
+
"</style>\n",
|
603 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
604 |
+
" <thead>\n",
|
605 |
+
" <tr style=\"text-align: right;\">\n",
|
606 |
+
" <th></th>\n",
|
607 |
+
" <th>PromoInterval</th>\n",
|
608 |
+
" <th>StoreType</th>\n",
|
609 |
+
" <th>Assortment</th>\n",
|
610 |
+
" <th>StateHoliday</th>\n",
|
611 |
+
" <th>Store</th>\n",
|
612 |
+
" <th>Customers</th>\n",
|
613 |
+
" <th>Promo</th>\n",
|
614 |
+
" <th>SchoolHoliday</th>\n",
|
615 |
+
" <th>CompetitionDistance</th>\n",
|
616 |
+
" <th>CompetitionOpenSinceMonth</th>\n",
|
617 |
+
" <th>CompetitionOpenSinceYear</th>\n",
|
618 |
+
" </tr>\n",
|
619 |
+
" </thead>\n",
|
620 |
+
" <tbody>\n",
|
621 |
+
" <tr>\n",
|
622 |
+
" <th>795018</th>\n",
|
623 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
624 |
+
" <td>Small Shop</td>\n",
|
625 |
+
" <td>basic</td>\n",
|
626 |
+
" <td>0</td>\n",
|
627 |
+
" <td>650</td>\n",
|
628 |
+
" <td>636</td>\n",
|
629 |
+
" <td>1</td>\n",
|
630 |
+
" <td>0</td>\n",
|
631 |
+
" <td>1420</td>\n",
|
632 |
+
" <td>10</td>\n",
|
633 |
+
" <td>2012</td>\n",
|
634 |
+
" </tr>\n",
|
635 |
+
" <tr>\n",
|
636 |
+
" <th>463276</th>\n",
|
637 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
638 |
+
" <td>Small Shop</td>\n",
|
639 |
+
" <td>basic</td>\n",
|
640 |
+
" <td>0</td>\n",
|
641 |
+
" <td>72</td>\n",
|
642 |
+
" <td>261</td>\n",
|
643 |
+
" <td>0</td>\n",
|
644 |
+
" <td>0</td>\n",
|
645 |
+
" <td>2200</td>\n",
|
646 |
+
" <td>12</td>\n",
|
647 |
+
" <td>2009</td>\n",
|
648 |
+
" </tr>\n",
|
649 |
+
" <tr>\n",
|
650 |
+
" <th>268352</th>\n",
|
651 |
+
" <td>0</td>\n",
|
652 |
+
" <td>Medium Store</td>\n",
|
653 |
+
" <td>extra</td>\n",
|
654 |
+
" <td>0</td>\n",
|
655 |
+
" <td>733</td>\n",
|
656 |
+
" <td>3567</td>\n",
|
657 |
+
" <td>1</td>\n",
|
658 |
+
" <td>0</td>\n",
|
659 |
+
" <td>860</td>\n",
|
660 |
+
" <td>10</td>\n",
|
661 |
+
" <td>1999</td>\n",
|
662 |
+
" </tr>\n",
|
663 |
+
" <tr>\n",
|
664 |
+
" <th>67308</th>\n",
|
665 |
+
" <td>0</td>\n",
|
666 |
+
" <td>Small Shop</td>\n",
|
667 |
+
" <td>extended</td>\n",
|
668 |
+
" <td>0</td>\n",
|
669 |
+
" <td>796</td>\n",
|
670 |
+
" <td>791</td>\n",
|
671 |
+
" <td>1</td>\n",
|
672 |
+
" <td>0</td>\n",
|
673 |
+
" <td>7180</td>\n",
|
674 |
+
" <td>11</td>\n",
|
675 |
+
" <td>2012</td>\n",
|
676 |
+
" </tr>\n",
|
677 |
+
" <tr>\n",
|
678 |
+
" <th>482458</th>\n",
|
679 |
+
" <td>0</td>\n",
|
680 |
+
" <td>Small Shop</td>\n",
|
681 |
+
" <td>extended</td>\n",
|
682 |
+
" <td>0</td>\n",
|
683 |
+
" <td>301</td>\n",
|
684 |
+
" <td>480</td>\n",
|
685 |
+
" <td>0</td>\n",
|
686 |
+
" <td>0</td>\n",
|
687 |
+
" <td>4510</td>\n",
|
688 |
+
" <td>3</td>\n",
|
689 |
+
" <td>2015</td>\n",
|
690 |
+
" </tr>\n",
|
691 |
+
" <tr>\n",
|
692 |
+
" <th>...</th>\n",
|
693 |
+
" <td>...</td>\n",
|
694 |
+
" <td>...</td>\n",
|
695 |
+
" <td>...</td>\n",
|
696 |
+
" <td>...</td>\n",
|
697 |
+
" <td>...</td>\n",
|
698 |
+
" <td>...</td>\n",
|
699 |
+
" <td>...</td>\n",
|
700 |
+
" <td>...</td>\n",
|
701 |
+
" <td>...</td>\n",
|
702 |
+
" <td>...</td>\n",
|
703 |
+
" <td>...</td>\n",
|
704 |
+
" </tr>\n",
|
705 |
+
" <tr>\n",
|
706 |
+
" <th>259178</th>\n",
|
707 |
+
" <td>Feb,May,Aug,Nov</td>\n",
|
708 |
+
" <td>Small Shop</td>\n",
|
709 |
+
" <td>basic</td>\n",
|
710 |
+
" <td>0</td>\n",
|
711 |
+
" <td>1013</td>\n",
|
712 |
+
" <td>217</td>\n",
|
713 |
+
" <td>0</td>\n",
|
714 |
+
" <td>0</td>\n",
|
715 |
+
" <td>630</td>\n",
|
716 |
+
" <td>2</td>\n",
|
717 |
+
" <td>2015</td>\n",
|
718 |
+
" </tr>\n",
|
719 |
+
" <tr>\n",
|
720 |
+
" <th>365838</th>\n",
|
721 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
722 |
+
" <td>Small Shop</td>\n",
|
723 |
+
" <td>extended</td>\n",
|
724 |
+
" <td>0</td>\n",
|
725 |
+
" <td>11</td>\n",
|
726 |
+
" <td>1394</td>\n",
|
727 |
+
" <td>1</td>\n",
|
728 |
+
" <td>0</td>\n",
|
729 |
+
" <td>960</td>\n",
|
730 |
+
" <td>11</td>\n",
|
731 |
+
" <td>2011</td>\n",
|
732 |
+
" </tr>\n",
|
733 |
+
" <tr>\n",
|
734 |
+
" <th>131932</th>\n",
|
735 |
+
" <td>0</td>\n",
|
736 |
+
" <td>Small Shop</td>\n",
|
737 |
+
" <td>basic</td>\n",
|
738 |
+
" <td>0</td>\n",
|
739 |
+
" <td>376</td>\n",
|
740 |
+
" <td>796</td>\n",
|
741 |
+
" <td>0</td>\n",
|
742 |
+
" <td>0</td>\n",
|
743 |
+
" <td>160</td>\n",
|
744 |
+
" <td>8</td>\n",
|
745 |
+
" <td>2012</td>\n",
|
746 |
+
" </tr>\n",
|
747 |
+
" <tr>\n",
|
748 |
+
" <th>671155</th>\n",
|
749 |
+
" <td>0</td>\n",
|
750 |
+
" <td>Hypermarket</td>\n",
|
751 |
+
" <td>extended</td>\n",
|
752 |
+
" <td>0</td>\n",
|
753 |
+
" <td>76</td>\n",
|
754 |
+
" <td>885</td>\n",
|
755 |
+
" <td>0</td>\n",
|
756 |
+
" <td>0</td>\n",
|
757 |
+
" <td>19960</td>\n",
|
758 |
+
" <td>3</td>\n",
|
759 |
+
" <td>2006</td>\n",
|
760 |
+
" </tr>\n",
|
761 |
+
" <tr>\n",
|
762 |
+
" <th>121958</th>\n",
|
763 |
+
" <td>Feb,May,Aug,Nov</td>\n",
|
764 |
+
" <td>Small Shop</td>\n",
|
765 |
+
" <td>basic</td>\n",
|
766 |
+
" <td>0</td>\n",
|
767 |
+
" <td>446</td>\n",
|
768 |
+
" <td>684</td>\n",
|
769 |
+
" <td>1</td>\n",
|
770 |
+
" <td>0</td>\n",
|
771 |
+
" <td>340</td>\n",
|
772 |
+
" <td>10</td>\n",
|
773 |
+
" <td>2000</td>\n",
|
774 |
+
" </tr>\n",
|
775 |
+
" </tbody>\n",
|
776 |
+
"</table>\n",
|
777 |
+
"<p>633253 rows × 11 columns</p>\n",
|
778 |
+
"</div>"
|
779 |
+
],
|
780 |
+
"text/plain": [
|
781 |
+
" PromoInterval StoreType Assortment StateHoliday Store \\\n",
|
782 |
+
"795018 Jan,Apr,Jul,Oct Small Shop basic 0 650 \n",
|
783 |
+
"463276 Jan,Apr,Jul,Oct Small Shop basic 0 72 \n",
|
784 |
+
"268352 0 Medium Store extra 0 733 \n",
|
785 |
+
"67308 0 Small Shop extended 0 796 \n",
|
786 |
+
"482458 0 Small Shop extended 0 301 \n",
|
787 |
+
"... ... ... ... ... ... \n",
|
788 |
+
"259178 Feb,May,Aug,Nov Small Shop basic 0 1013 \n",
|
789 |
+
"365838 Jan,Apr,Jul,Oct Small Shop extended 0 11 \n",
|
790 |
+
"131932 0 Small Shop basic 0 376 \n",
|
791 |
+
"671155 0 Hypermarket extended 0 76 \n",
|
792 |
+
"121958 Feb,May,Aug,Nov Small Shop basic 0 446 \n",
|
793 |
+
"\n",
|
794 |
+
" Customers Promo SchoolHoliday CompetitionDistance \\\n",
|
795 |
+
"795018 636 1 0 1420 \n",
|
796 |
+
"463276 261 0 0 2200 \n",
|
797 |
+
"268352 3567 1 0 860 \n",
|
798 |
+
"67308 791 1 0 7180 \n",
|
799 |
+
"482458 480 0 0 4510 \n",
|
800 |
+
"... ... ... ... ... \n",
|
801 |
+
"259178 217 0 0 630 \n",
|
802 |
+
"365838 1394 1 0 960 \n",
|
803 |
+
"131932 796 0 0 160 \n",
|
804 |
+
"671155 885 0 0 19960 \n",
|
805 |
+
"121958 684 1 0 340 \n",
|
806 |
+
"\n",
|
807 |
+
" CompetitionOpenSinceMonth CompetitionOpenSinceYear \n",
|
808 |
+
"795018 10 2012 \n",
|
809 |
+
"463276 12 2009 \n",
|
810 |
+
"268352 10 1999 \n",
|
811 |
+
"67308 11 2012 \n",
|
812 |
+
"482458 3 2015 \n",
|
813 |
+
"... ... ... \n",
|
814 |
+
"259178 2 2015 \n",
|
815 |
+
"365838 11 2011 \n",
|
816 |
+
"131932 8 2012 \n",
|
817 |
+
"671155 3 2006 \n",
|
818 |
+
"121958 10 2000 \n",
|
819 |
+
"\n",
|
820 |
+
"[633253 rows x 11 columns]"
|
821 |
+
]
|
822 |
+
},
|
823 |
+
"execution_count": 18,
|
824 |
+
"metadata": {},
|
825 |
+
"output_type": "execute_result"
|
826 |
+
}
|
827 |
+
],
|
828 |
+
"source": [
|
829 |
+
"X_train"
|
830 |
+
]
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"cell_type": "code",
|
834 |
+
"execution_count": 19,
|
835 |
+
"metadata": {},
|
836 |
+
"outputs": [
|
837 |
+
{
|
838 |
+
"data": {
|
839 |
+
"text/plain": [
|
840 |
+
"PromoInterval\n",
|
841 |
+
"0 423292\n",
|
842 |
+
"Jan,Apr,Jul,Oct 242397\n",
|
843 |
+
"Feb,May,Aug,Nov 97998\n",
|
844 |
+
"Mar,Jun,Sept,Dec 80651\n",
|
845 |
+
"Name: count, dtype: int64"
|
846 |
+
]
|
847 |
+
},
|
848 |
+
"execution_count": 19,
|
849 |
+
"metadata": {},
|
850 |
+
"output_type": "execute_result"
|
851 |
+
}
|
852 |
+
],
|
853 |
+
"source": [
|
854 |
+
"df[\"PromoInterval\"].value_counts()"
|
855 |
+
]
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"cell_type": "markdown",
|
859 |
+
"metadata": {},
|
860 |
+
"source": [
|
861 |
+
"# Pipeline"
|
862 |
+
]
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"cell_type": "code",
|
866 |
+
"execution_count": 20,
|
867 |
+
"metadata": {},
|
868 |
+
"outputs": [
|
869 |
+
{
|
870 |
+
"data": {
|
871 |
+
"text/html": [
|
872 |
+
"<style>#sk-container-id-1 {\n",
|
873 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
874 |
+
" --sklearn-color-text: black;\n",
|
875 |
+
" --sklearn-color-line: gray;\n",
|
876 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
877 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
878 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
879 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
880 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
881 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
882 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
883 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
884 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
885 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
886 |
+
"\n",
|
887 |
+
" /* Specific color for light theme */\n",
|
888 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
889 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
890 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
891 |
+
" --sklearn-color-icon: #696969;\n",
|
892 |
+
"\n",
|
893 |
+
" @media (prefers-color-scheme: dark) {\n",
|
894 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
895 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
896 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
897 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
898 |
+
" --sklearn-color-icon: #878787;\n",
|
899 |
+
" }\n",
|
900 |
+
"}\n",
|
901 |
+
"\n",
|
902 |
+
"#sk-container-id-1 {\n",
|
903 |
+
" color: var(--sklearn-color-text);\n",
|
904 |
+
"}\n",
|
905 |
+
"\n",
|
906 |
+
"#sk-container-id-1 pre {\n",
|
907 |
+
" padding: 0;\n",
|
908 |
+
"}\n",
|
909 |
+
"\n",
|
910 |
+
"#sk-container-id-1 input.sk-hidden--visually {\n",
|
911 |
+
" border: 0;\n",
|
912 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
913 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
914 |
+
" height: 1px;\n",
|
915 |
+
" margin: -1px;\n",
|
916 |
+
" overflow: hidden;\n",
|
917 |
+
" padding: 0;\n",
|
918 |
+
" position: absolute;\n",
|
919 |
+
" width: 1px;\n",
|
920 |
+
"}\n",
|
921 |
+
"\n",
|
922 |
+
"#sk-container-id-1 div.sk-dashed-wrapped {\n",
|
923 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
924 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
925 |
+
" box-sizing: border-box;\n",
|
926 |
+
" padding-bottom: 0.4em;\n",
|
927 |
+
" background-color: var(--sklearn-color-background);\n",
|
928 |
+
"}\n",
|
929 |
+
"\n",
|
930 |
+
"#sk-container-id-1 div.sk-container {\n",
|
931 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
932 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
933 |
+
" so we also need the `!important` here to be able to override the\n",
|
934 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
935 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
936 |
+
" display: inline-block !important;\n",
|
937 |
+
" position: relative;\n",
|
938 |
+
"}\n",
|
939 |
+
"\n",
|
940 |
+
"#sk-container-id-1 div.sk-text-repr-fallback {\n",
|
941 |
+
" display: none;\n",
|
942 |
+
"}\n",
|
943 |
+
"\n",
|
944 |
+
"div.sk-parallel-item,\n",
|
945 |
+
"div.sk-serial,\n",
|
946 |
+
"div.sk-item {\n",
|
947 |
+
" /* draw centered vertical line to link estimators */\n",
|
948 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
949 |
+
" background-size: 2px 100%;\n",
|
950 |
+
" background-repeat: no-repeat;\n",
|
951 |
+
" background-position: center center;\n",
|
952 |
+
"}\n",
|
953 |
+
"\n",
|
954 |
+
"/* Parallel-specific style estimator block */\n",
|
955 |
+
"\n",
|
956 |
+
"#sk-container-id-1 div.sk-parallel-item::after {\n",
|
957 |
+
" content: \"\";\n",
|
958 |
+
" width: 100%;\n",
|
959 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
960 |
+
" flex-grow: 1;\n",
|
961 |
+
"}\n",
|
962 |
+
"\n",
|
963 |
+
"#sk-container-id-1 div.sk-parallel {\n",
|
964 |
+
" display: flex;\n",
|
965 |
+
" align-items: stretch;\n",
|
966 |
+
" justify-content: center;\n",
|
967 |
+
" background-color: var(--sklearn-color-background);\n",
|
968 |
+
" position: relative;\n",
|
969 |
+
"}\n",
|
970 |
+
"\n",
|
971 |
+
"#sk-container-id-1 div.sk-parallel-item {\n",
|
972 |
+
" display: flex;\n",
|
973 |
+
" flex-direction: column;\n",
|
974 |
+
"}\n",
|
975 |
+
"\n",
|
976 |
+
"#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
|
977 |
+
" align-self: flex-end;\n",
|
978 |
+
" width: 50%;\n",
|
979 |
+
"}\n",
|
980 |
+
"\n",
|
981 |
+
"#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
|
982 |
+
" align-self: flex-start;\n",
|
983 |
+
" width: 50%;\n",
|
984 |
+
"}\n",
|
985 |
+
"\n",
|
986 |
+
"#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
|
987 |
+
" width: 0;\n",
|
988 |
+
"}\n",
|
989 |
+
"\n",
|
990 |
+
"/* Serial-specific style estimator block */\n",
|
991 |
+
"\n",
|
992 |
+
"#sk-container-id-1 div.sk-serial {\n",
|
993 |
+
" display: flex;\n",
|
994 |
+
" flex-direction: column;\n",
|
995 |
+
" align-items: center;\n",
|
996 |
+
" background-color: var(--sklearn-color-background);\n",
|
997 |
+
" padding-right: 1em;\n",
|
998 |
+
" padding-left: 1em;\n",
|
999 |
+
"}\n",
|
1000 |
+
"\n",
|
1001 |
+
"\n",
|
1002 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
1003 |
+
"clickable and can be expanded/collapsed.\n",
|
1004 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
1005 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
1006 |
+
"*/\n",
|
1007 |
+
"\n",
|
1008 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
1009 |
+
"\n",
|
1010 |
+
"#sk-container-id-1 div.sk-toggleable {\n",
|
1011 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
1012 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
1013 |
+
" background-color: var(--sklearn-color-background);\n",
|
1014 |
+
"}\n",
|
1015 |
+
"\n",
|
1016 |
+
"/* Toggleable label */\n",
|
1017 |
+
"#sk-container-id-1 label.sk-toggleable__label {\n",
|
1018 |
+
" cursor: pointer;\n",
|
1019 |
+
" display: block;\n",
|
1020 |
+
" width: 100%;\n",
|
1021 |
+
" margin-bottom: 0;\n",
|
1022 |
+
" padding: 0.5em;\n",
|
1023 |
+
" box-sizing: border-box;\n",
|
1024 |
+
" text-align: center;\n",
|
1025 |
+
"}\n",
|
1026 |
+
"\n",
|
1027 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
|
1028 |
+
" /* Arrow on the left of the label */\n",
|
1029 |
+
" content: \"▸\";\n",
|
1030 |
+
" float: left;\n",
|
1031 |
+
" margin-right: 0.25em;\n",
|
1032 |
+
" color: var(--sklearn-color-icon);\n",
|
1033 |
+
"}\n",
|
1034 |
+
"\n",
|
1035 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
|
1036 |
+
" color: var(--sklearn-color-text);\n",
|
1037 |
+
"}\n",
|
1038 |
+
"\n",
|
1039 |
+
"/* Toggleable content - dropdown */\n",
|
1040 |
+
"\n",
|
1041 |
+
"#sk-container-id-1 div.sk-toggleable__content {\n",
|
1042 |
+
" max-height: 0;\n",
|
1043 |
+
" max-width: 0;\n",
|
1044 |
+
" overflow: hidden;\n",
|
1045 |
+
" text-align: left;\n",
|
1046 |
+
" /* unfitted */\n",
|
1047 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1048 |
+
"}\n",
|
1049 |
+
"\n",
|
1050 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
|
1051 |
+
" /* fitted */\n",
|
1052 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1053 |
+
"}\n",
|
1054 |
+
"\n",
|
1055 |
+
"#sk-container-id-1 div.sk-toggleable__content pre {\n",
|
1056 |
+
" margin: 0.2em;\n",
|
1057 |
+
" border-radius: 0.25em;\n",
|
1058 |
+
" color: var(--sklearn-color-text);\n",
|
1059 |
+
" /* unfitted */\n",
|
1060 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1061 |
+
"}\n",
|
1062 |
+
"\n",
|
1063 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
|
1064 |
+
" /* unfitted */\n",
|
1065 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1066 |
+
"}\n",
|
1067 |
+
"\n",
|
1068 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
1069 |
+
" /* Expand drop-down */\n",
|
1070 |
+
" max-height: 200px;\n",
|
1071 |
+
" max-width: 100%;\n",
|
1072 |
+
" overflow: auto;\n",
|
1073 |
+
"}\n",
|
1074 |
+
"\n",
|
1075 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
1076 |
+
" content: \"▾\";\n",
|
1077 |
+
"}\n",
|
1078 |
+
"\n",
|
1079 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
1080 |
+
"\n",
|
1081 |
+
"#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1082 |
+
" color: var(--sklearn-color-text);\n",
|
1083 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1084 |
+
"}\n",
|
1085 |
+
"\n",
|
1086 |
+
"#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1087 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1088 |
+
"}\n",
|
1089 |
+
"\n",
|
1090 |
+
"/* Estimator-specific style */\n",
|
1091 |
+
"\n",
|
1092 |
+
"/* Colorize estimator box */\n",
|
1093 |
+
"#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1094 |
+
" /* unfitted */\n",
|
1095 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1096 |
+
"}\n",
|
1097 |
+
"\n",
|
1098 |
+
"#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
1099 |
+
" /* fitted */\n",
|
1100 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1101 |
+
"}\n",
|
1102 |
+
"\n",
|
1103 |
+
"#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
|
1104 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
1105 |
+
" /* The background is the default theme color */\n",
|
1106 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
1107 |
+
"}\n",
|
1108 |
+
"\n",
|
1109 |
+
"/* On hover, darken the color of the background */\n",
|
1110 |
+
"#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
|
1111 |
+
" color: var(--sklearn-color-text);\n",
|
1112 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1113 |
+
"}\n",
|
1114 |
+
"\n",
|
1115 |
+
"/* Label box, darken color on hover, fitted */\n",
|
1116 |
+
"#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
1117 |
+
" color: var(--sklearn-color-text);\n",
|
1118 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1119 |
+
"}\n",
|
1120 |
+
"\n",
|
1121 |
+
"/* Estimator label */\n",
|
1122 |
+
"\n",
|
1123 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
1124 |
+
" font-family: monospace;\n",
|
1125 |
+
" font-weight: bold;\n",
|
1126 |
+
" display: inline-block;\n",
|
1127 |
+
" line-height: 1.2em;\n",
|
1128 |
+
"}\n",
|
1129 |
+
"\n",
|
1130 |
+
"#sk-container-id-1 div.sk-label-container {\n",
|
1131 |
+
" text-align: center;\n",
|
1132 |
+
"}\n",
|
1133 |
+
"\n",
|
1134 |
+
"/* Estimator-specific */\n",
|
1135 |
+
"#sk-container-id-1 div.sk-estimator {\n",
|
1136 |
+
" font-family: monospace;\n",
|
1137 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
1138 |
+
" border-radius: 0.25em;\n",
|
1139 |
+
" box-sizing: border-box;\n",
|
1140 |
+
" margin-bottom: 0.5em;\n",
|
1141 |
+
" /* unfitted */\n",
|
1142 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
1143 |
+
"}\n",
|
1144 |
+
"\n",
|
1145 |
+
"#sk-container-id-1 div.sk-estimator.fitted {\n",
|
1146 |
+
" /* fitted */\n",
|
1147 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
1148 |
+
"}\n",
|
1149 |
+
"\n",
|
1150 |
+
"/* on hover */\n",
|
1151 |
+
"#sk-container-id-1 div.sk-estimator:hover {\n",
|
1152 |
+
" /* unfitted */\n",
|
1153 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
1154 |
+
"}\n",
|
1155 |
+
"\n",
|
1156 |
+
"#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
|
1157 |
+
" /* fitted */\n",
|
1158 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
1159 |
+
"}\n",
|
1160 |
+
"\n",
|
1161 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
1162 |
+
"\n",
|
1163 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
1164 |
+
"\n",
|
1165 |
+
".sk-estimator-doc-link,\n",
|
1166 |
+
"a:link.sk-estimator-doc-link,\n",
|
1167 |
+
"a:visited.sk-estimator-doc-link {\n",
|
1168 |
+
" float: right;\n",
|
1169 |
+
" font-size: smaller;\n",
|
1170 |
+
" line-height: 1em;\n",
|
1171 |
+
" font-family: monospace;\n",
|
1172 |
+
" background-color: var(--sklearn-color-background);\n",
|
1173 |
+
" border-radius: 1em;\n",
|
1174 |
+
" height: 1em;\n",
|
1175 |
+
" width: 1em;\n",
|
1176 |
+
" text-decoration: none !important;\n",
|
1177 |
+
" margin-left: 1ex;\n",
|
1178 |
+
" /* unfitted */\n",
|
1179 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1180 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1181 |
+
"}\n",
|
1182 |
+
"\n",
|
1183 |
+
".sk-estimator-doc-link.fitted,\n",
|
1184 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
1185 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
1186 |
+
" /* fitted */\n",
|
1187 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1188 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1189 |
+
"}\n",
|
1190 |
+
"\n",
|
1191 |
+
"/* On hover */\n",
|
1192 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
1193 |
+
".sk-estimator-doc-link:hover,\n",
|
1194 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
1195 |
+
".sk-estimator-doc-link:hover {\n",
|
1196 |
+
" /* unfitted */\n",
|
1197 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1198 |
+
" color: var(--sklearn-color-background);\n",
|
1199 |
+
" text-decoration: none;\n",
|
1200 |
+
"}\n",
|
1201 |
+
"\n",
|
1202 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1203 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
1204 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
1205 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
1206 |
+
" /* fitted */\n",
|
1207 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1208 |
+
" color: var(--sklearn-color-background);\n",
|
1209 |
+
" text-decoration: none;\n",
|
1210 |
+
"}\n",
|
1211 |
+
"\n",
|
1212 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
1213 |
+
".sk-estimator-doc-link span {\n",
|
1214 |
+
" display: none;\n",
|
1215 |
+
" z-index: 9999;\n",
|
1216 |
+
" position: relative;\n",
|
1217 |
+
" font-weight: normal;\n",
|
1218 |
+
" right: .2ex;\n",
|
1219 |
+
" padding: .5ex;\n",
|
1220 |
+
" margin: .5ex;\n",
|
1221 |
+
" width: min-content;\n",
|
1222 |
+
" min-width: 20ex;\n",
|
1223 |
+
" max-width: 50ex;\n",
|
1224 |
+
" color: var(--sklearn-color-text);\n",
|
1225 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
1226 |
+
" /* unfitted */\n",
|
1227 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
1228 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
1229 |
+
"}\n",
|
1230 |
+
"\n",
|
1231 |
+
".sk-estimator-doc-link.fitted span {\n",
|
1232 |
+
" /* fitted */\n",
|
1233 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
1234 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
1235 |
+
"}\n",
|
1236 |
+
"\n",
|
1237 |
+
".sk-estimator-doc-link:hover span {\n",
|
1238 |
+
" display: block;\n",
|
1239 |
+
"}\n",
|
1240 |
+
"\n",
|
1241 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
1242 |
+
"\n",
|
1243 |
+
"#sk-container-id-1 a.estimator_doc_link {\n",
|
1244 |
+
" float: right;\n",
|
1245 |
+
" font-size: 1rem;\n",
|
1246 |
+
" line-height: 1em;\n",
|
1247 |
+
" font-family: monospace;\n",
|
1248 |
+
" background-color: var(--sklearn-color-background);\n",
|
1249 |
+
" border-radius: 1rem;\n",
|
1250 |
+
" height: 1rem;\n",
|
1251 |
+
" width: 1rem;\n",
|
1252 |
+
" text-decoration: none;\n",
|
1253 |
+
" /* unfitted */\n",
|
1254 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1255 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1256 |
+
"}\n",
|
1257 |
+
"\n",
|
1258 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted {\n",
|
1259 |
+
" /* fitted */\n",
|
1260 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1261 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
1262 |
+
"}\n",
|
1263 |
+
"\n",
|
1264 |
+
"/* On hover */\n",
|
1265 |
+
"#sk-container-id-1 a.estimator_doc_link:hover {\n",
|
1266 |
+
" /* unfitted */\n",
|
1267 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1268 |
+
" color: var(--sklearn-color-background);\n",
|
1269 |
+
" text-decoration: none;\n",
|
1270 |
+
"}\n",
|
1271 |
+
"\n",
|
1272 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
|
1273 |
+
" /* fitted */\n",
|
1274 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1275 |
+
"}\n",
|
1276 |
+
"</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('encoding',\n",
|
1277 |
+
" ColumnTransformer(remainder='passthrough',\n",
|
1278 |
+
" transformers=[('ohe',\n",
|
1279 |
+
" OneHotEncoder(handle_unknown='ignore'),\n",
|
1280 |
+
" ['PromoInterval', 'StoreType',\n",
|
1281 |
+
" 'Assortment'])])),\n",
|
1282 |
+
" ('scaler', StandardScaler()),\n",
|
1283 |
+
" ('model',\n",
|
1284 |
+
" XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
1285 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
1286 |
+
" colsample_bytree=None, device=None,...\n",
|
1287 |
+
" feature_types=None, gamma=None, grow_policy=None,\n",
|
1288 |
+
" importance_type=None,\n",
|
1289 |
+
" interaction_constraints=None, learning_rate=0.1,\n",
|
1290 |
+
" max_bin=None, max_cat_threshold=None,\n",
|
1291 |
+
" max_cat_to_onehot=None, max_delta_step=None,\n",
|
1292 |
+
" max_depth=13, max_leaves=None,\n",
|
1293 |
+
" min_child_weight=None, missing=nan,\n",
|
1294 |
+
" monotone_constraints=None, multi_strategy=None,\n",
|
1295 |
+
" n_estimators=None, n_jobs=None,\n",
|
1296 |
+
" num_parallel_tree=None, random_state=None, ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> Pipeline<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html\">?<span>Documentation for Pipeline</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[('encoding',\n",
|
1297 |
+
" ColumnTransformer(remainder='passthrough',\n",
|
1298 |
+
" transformers=[('ohe',\n",
|
1299 |
+
" OneHotEncoder(handle_unknown='ignore'),\n",
|
1300 |
+
" ['PromoInterval', 'StoreType',\n",
|
1301 |
+
" 'Assortment'])])),\n",
|
1302 |
+
" ('scaler', StandardScaler()),\n",
|
1303 |
+
" ('model',\n",
|
1304 |
+
" XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
1305 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
1306 |
+
" colsample_bytree=None, device=None,...\n",
|
1307 |
+
" feature_types=None, gamma=None, grow_policy=None,\n",
|
1308 |
+
" importance_type=None,\n",
|
1309 |
+
" interaction_constraints=None, learning_rate=0.1,\n",
|
1310 |
+
" max_bin=None, max_cat_threshold=None,\n",
|
1311 |
+
" max_cat_to_onehot=None, max_delta_step=None,\n",
|
1312 |
+
" max_depth=13, max_leaves=None,\n",
|
1313 |
+
" min_child_weight=None, missing=nan,\n",
|
1314 |
+
" monotone_constraints=None, multi_strategy=None,\n",
|
1315 |
+
" n_estimators=None, n_jobs=None,\n",
|
1316 |
+
" num_parallel_tree=None, random_state=None, ...))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> encoding: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for encoding: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(remainder='passthrough',\n",
|
1317 |
+
" transformers=[('ohe', OneHotEncoder(handle_unknown='ignore'),\n",
|
1318 |
+
" ['PromoInterval', 'StoreType', 'Assortment'])])</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">ohe</label><div class=\"sk-toggleable__content fitted\"><pre>['PromoInterval', 'StoreType', 'Assortment']</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(handle_unknown='ignore')</pre></div> </div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">remainder</label><div class=\"sk-toggleable__content fitted\"><pre>['StateHoliday', 'Store', 'Customers', 'Promo', 'SchoolHoliday', 'CompetitionDistance', 'CompetitionOpenSinceMonth', 'CompetitionOpenSinceYear']</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">passthrough</label><div class=\"sk-toggleable__content fitted\"><pre>passthrough</pre></div> </div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" ><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\"> StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" ><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">XGBRegressor</label><div class=\"sk-toggleable__content fitted\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
1319 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
1320 |
+
" colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
|
1321 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
1322 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
1323 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
1324 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
1325 |
+
" max_delta_step=None, max_depth=13, max_leaves=None,\n",
|
1326 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
1327 |
+
" multi_strategy=None, n_estimators=None, n_jobs=None,\n",
|
1328 |
+
" num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>"
|
1329 |
+
],
|
1330 |
+
"text/plain": [
|
1331 |
+
"Pipeline(steps=[('encoding',\n",
|
1332 |
+
" ColumnTransformer(remainder='passthrough',\n",
|
1333 |
+
" transformers=[('ohe',\n",
|
1334 |
+
" OneHotEncoder(handle_unknown='ignore'),\n",
|
1335 |
+
" ['PromoInterval', 'StoreType',\n",
|
1336 |
+
" 'Assortment'])])),\n",
|
1337 |
+
" ('scaler', StandardScaler()),\n",
|
1338 |
+
" ('model',\n",
|
1339 |
+
" XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
|
1340 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
1341 |
+
" colsample_bytree=None, device=None,...\n",
|
1342 |
+
" feature_types=None, gamma=None, grow_policy=None,\n",
|
1343 |
+
" importance_type=None,\n",
|
1344 |
+
" interaction_constraints=None, learning_rate=0.1,\n",
|
1345 |
+
" max_bin=None, max_cat_threshold=None,\n",
|
1346 |
+
" max_cat_to_onehot=None, max_delta_step=None,\n",
|
1347 |
+
" max_depth=13, max_leaves=None,\n",
|
1348 |
+
" min_child_weight=None, missing=nan,\n",
|
1349 |
+
" monotone_constraints=None, multi_strategy=None,\n",
|
1350 |
+
" n_estimators=None, n_jobs=None,\n",
|
1351 |
+
" num_parallel_tree=None, random_state=None, ...))])"
|
1352 |
+
]
|
1353 |
+
},
|
1354 |
+
"execution_count": 20,
|
1355 |
+
"metadata": {},
|
1356 |
+
"output_type": "execute_result"
|
1357 |
+
}
|
1358 |
+
],
|
1359 |
+
"source": [
|
1360 |
+
"# Define the ColumnTransformer\n",
|
1361 |
+
"ohe_col = [\"PromoInterval\", \"StoreType\", \"Assortment\"]\n",
|
1362 |
+
"\n",
|
1363 |
+
"ct_encoding = ColumnTransformer(\n",
|
1364 |
+
" transformers=[\n",
|
1365 |
+
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\"), ohe_col)\n",
|
1366 |
+
" ],\n",
|
1367 |
+
" remainder=\"passthrough\"\n",
|
1368 |
+
")\n",
|
1369 |
+
"\n",
|
1370 |
+
"\n",
|
1371 |
+
"# Define the XGBRegressor model\n",
|
1372 |
+
"model = XGBRegressor(learning_rate=0.1, max_depth=13)\n",
|
1373 |
+
"\n",
|
1374 |
+
"# Define the pipeline\n",
|
1375 |
+
"pipe = Pipeline(steps=[\n",
|
1376 |
+
" (\"encoding\", ct_encoding),\n",
|
1377 |
+
" (\"scaler\", StandardScaler()),\n",
|
1378 |
+
" (\"model\", model)\n",
|
1379 |
+
"])\n",
|
1380 |
+
"\n",
|
1381 |
+
"# Now you can fit your pipeline with your data\n",
|
1382 |
+
"pipe.fit(X_train, y_train)\n"
|
1383 |
+
]
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"cell_type": "code",
|
1387 |
+
"execution_count": 21,
|
1388 |
+
"metadata": {},
|
1389 |
+
"outputs": [
|
1390 |
+
{
|
1391 |
+
"data": {
|
1392 |
+
"text/plain": [
|
1393 |
+
"array([5674.2217, 7922.6377, 9180.126 , ..., 7287.449 , 3228.0945,\n",
|
1394 |
+
" 4453.9897], dtype=float32)"
|
1395 |
+
]
|
1396 |
+
},
|
1397 |
+
"execution_count": 21,
|
1398 |
+
"metadata": {},
|
1399 |
+
"output_type": "execute_result"
|
1400 |
+
}
|
1401 |
+
],
|
1402 |
+
"source": [
|
1403 |
+
"y_pred = pipe.predict(X_test)\n",
|
1404 |
+
"y_pred"
|
1405 |
+
]
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"cell_type": "code",
|
1409 |
+
"execution_count": 22,
|
1410 |
+
"metadata": {},
|
1411 |
+
"outputs": [
|
1412 |
+
{
|
1413 |
+
"data": {
|
1414 |
+
"text/plain": [
|
1415 |
+
"43879 5934\n",
|
1416 |
+
"562681 7800\n",
|
1417 |
+
"239643 9111\n",
|
1418 |
+
"689976 7831\n",
|
1419 |
+
"397240 10046\n",
|
1420 |
+
" ... \n",
|
1421 |
+
"512864 13692\n",
|
1422 |
+
"750784 6958\n",
|
1423 |
+
"192729 6785\n",
|
1424 |
+
"755727 2925\n",
|
1425 |
+
"604917 4178\n",
|
1426 |
+
"Name: Sales, Length: 211085, dtype: int64"
|
1427 |
+
]
|
1428 |
+
},
|
1429 |
+
"execution_count": 22,
|
1430 |
+
"metadata": {},
|
1431 |
+
"output_type": "execute_result"
|
1432 |
+
}
|
1433 |
+
],
|
1434 |
+
"source": [
|
1435 |
+
"y_test"
|
1436 |
+
]
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"cell_type": "code",
|
1440 |
+
"execution_count": 23,
|
1441 |
+
"metadata": {},
|
1442 |
+
"outputs": [
|
1443 |
+
{
|
1444 |
+
"data": {
|
1445 |
+
"text/plain": [
|
1446 |
+
"Index(['PromoInterval', 'StoreType', 'Assortment', 'StateHoliday', 'Store',\n",
|
1447 |
+
" 'Customers', 'Promo', 'SchoolHoliday', 'CompetitionDistance',\n",
|
1448 |
+
" 'CompetitionOpenSinceMonth', 'CompetitionOpenSinceYear'],\n",
|
1449 |
+
" dtype='object')"
|
1450 |
+
]
|
1451 |
+
},
|
1452 |
+
"execution_count": 23,
|
1453 |
+
"metadata": {},
|
1454 |
+
"output_type": "execute_result"
|
1455 |
+
}
|
1456 |
+
],
|
1457 |
+
"source": [
|
1458 |
+
"X_train.columns"
|
1459 |
+
]
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"cell_type": "code",
|
1463 |
+
"execution_count": 24,
|
1464 |
+
"metadata": {},
|
1465 |
+
"outputs": [
|
1466 |
+
{
|
1467 |
+
"data": {
|
1468 |
+
"text/html": [
|
1469 |
+
"<div>\n",
|
1470 |
+
"<style scoped>\n",
|
1471 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1472 |
+
" vertical-align: middle;\n",
|
1473 |
+
" }\n",
|
1474 |
+
"\n",
|
1475 |
+
" .dataframe tbody tr th {\n",
|
1476 |
+
" vertical-align: top;\n",
|
1477 |
+
" }\n",
|
1478 |
+
"\n",
|
1479 |
+
" .dataframe thead th {\n",
|
1480 |
+
" text-align: right;\n",
|
1481 |
+
" }\n",
|
1482 |
+
"</style>\n",
|
1483 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1484 |
+
" <thead>\n",
|
1485 |
+
" <tr style=\"text-align: right;\">\n",
|
1486 |
+
" <th></th>\n",
|
1487 |
+
" <th>PromoInterval</th>\n",
|
1488 |
+
" <th>StoreType</th>\n",
|
1489 |
+
" <th>Assortment</th>\n",
|
1490 |
+
" <th>StateHoliday</th>\n",
|
1491 |
+
" <th>Store</th>\n",
|
1492 |
+
" <th>Customers</th>\n",
|
1493 |
+
" <th>Promo</th>\n",
|
1494 |
+
" <th>SchoolHoliday</th>\n",
|
1495 |
+
" <th>CompetitionDistance</th>\n",
|
1496 |
+
" <th>CompetitionOpenSinceMonth</th>\n",
|
1497 |
+
" <th>CompetitionOpenSinceYear</th>\n",
|
1498 |
+
" </tr>\n",
|
1499 |
+
" </thead>\n",
|
1500 |
+
" <tbody>\n",
|
1501 |
+
" <tr>\n",
|
1502 |
+
" <th>795018</th>\n",
|
1503 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
1504 |
+
" <td>Small Shop</td>\n",
|
1505 |
+
" <td>basic</td>\n",
|
1506 |
+
" <td>0</td>\n",
|
1507 |
+
" <td>650</td>\n",
|
1508 |
+
" <td>636</td>\n",
|
1509 |
+
" <td>1</td>\n",
|
1510 |
+
" <td>0</td>\n",
|
1511 |
+
" <td>1420</td>\n",
|
1512 |
+
" <td>10</td>\n",
|
1513 |
+
" <td>2012</td>\n",
|
1514 |
+
" </tr>\n",
|
1515 |
+
" <tr>\n",
|
1516 |
+
" <th>463276</th>\n",
|
1517 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
1518 |
+
" <td>Small Shop</td>\n",
|
1519 |
+
" <td>basic</td>\n",
|
1520 |
+
" <td>0</td>\n",
|
1521 |
+
" <td>72</td>\n",
|
1522 |
+
" <td>261</td>\n",
|
1523 |
+
" <td>0</td>\n",
|
1524 |
+
" <td>0</td>\n",
|
1525 |
+
" <td>2200</td>\n",
|
1526 |
+
" <td>12</td>\n",
|
1527 |
+
" <td>2009</td>\n",
|
1528 |
+
" </tr>\n",
|
1529 |
+
" <tr>\n",
|
1530 |
+
" <th>268352</th>\n",
|
1531 |
+
" <td>0</td>\n",
|
1532 |
+
" <td>Medium Store</td>\n",
|
1533 |
+
" <td>extra</td>\n",
|
1534 |
+
" <td>0</td>\n",
|
1535 |
+
" <td>733</td>\n",
|
1536 |
+
" <td>3567</td>\n",
|
1537 |
+
" <td>1</td>\n",
|
1538 |
+
" <td>0</td>\n",
|
1539 |
+
" <td>860</td>\n",
|
1540 |
+
" <td>10</td>\n",
|
1541 |
+
" <td>1999</td>\n",
|
1542 |
+
" </tr>\n",
|
1543 |
+
" <tr>\n",
|
1544 |
+
" <th>67308</th>\n",
|
1545 |
+
" <td>0</td>\n",
|
1546 |
+
" <td>Small Shop</td>\n",
|
1547 |
+
" <td>extended</td>\n",
|
1548 |
+
" <td>0</td>\n",
|
1549 |
+
" <td>796</td>\n",
|
1550 |
+
" <td>791</td>\n",
|
1551 |
+
" <td>1</td>\n",
|
1552 |
+
" <td>0</td>\n",
|
1553 |
+
" <td>7180</td>\n",
|
1554 |
+
" <td>11</td>\n",
|
1555 |
+
" <td>2012</td>\n",
|
1556 |
+
" </tr>\n",
|
1557 |
+
" <tr>\n",
|
1558 |
+
" <th>482458</th>\n",
|
1559 |
+
" <td>0</td>\n",
|
1560 |
+
" <td>Small Shop</td>\n",
|
1561 |
+
" <td>extended</td>\n",
|
1562 |
+
" <td>0</td>\n",
|
1563 |
+
" <td>301</td>\n",
|
1564 |
+
" <td>480</td>\n",
|
1565 |
+
" <td>0</td>\n",
|
1566 |
+
" <td>0</td>\n",
|
1567 |
+
" <td>4510</td>\n",
|
1568 |
+
" <td>3</td>\n",
|
1569 |
+
" <td>2015</td>\n",
|
1570 |
+
" </tr>\n",
|
1571 |
+
" </tbody>\n",
|
1572 |
+
"</table>\n",
|
1573 |
+
"</div>"
|
1574 |
+
],
|
1575 |
+
"text/plain": [
|
1576 |
+
" PromoInterval StoreType Assortment StateHoliday Store \\\n",
|
1577 |
+
"795018 Jan,Apr,Jul,Oct Small Shop basic 0 650 \n",
|
1578 |
+
"463276 Jan,Apr,Jul,Oct Small Shop basic 0 72 \n",
|
1579 |
+
"268352 0 Medium Store extra 0 733 \n",
|
1580 |
+
"67308 0 Small Shop extended 0 796 \n",
|
1581 |
+
"482458 0 Small Shop extended 0 301 \n",
|
1582 |
+
"\n",
|
1583 |
+
" Customers Promo SchoolHoliday CompetitionDistance \\\n",
|
1584 |
+
"795018 636 1 0 1420 \n",
|
1585 |
+
"463276 261 0 0 2200 \n",
|
1586 |
+
"268352 3567 1 0 860 \n",
|
1587 |
+
"67308 791 1 0 7180 \n",
|
1588 |
+
"482458 480 0 0 4510 \n",
|
1589 |
+
"\n",
|
1590 |
+
" CompetitionOpenSinceMonth CompetitionOpenSinceYear \n",
|
1591 |
+
"795018 10 2012 \n",
|
1592 |
+
"463276 12 2009 \n",
|
1593 |
+
"268352 10 1999 \n",
|
1594 |
+
"67308 11 2012 \n",
|
1595 |
+
"482458 3 2015 "
|
1596 |
+
]
|
1597 |
+
},
|
1598 |
+
"execution_count": 24,
|
1599 |
+
"metadata": {},
|
1600 |
+
"output_type": "execute_result"
|
1601 |
+
}
|
1602 |
+
],
|
1603 |
+
"source": [
|
1604 |
+
"X_train.head()"
|
1605 |
+
]
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"cell_type": "code",
|
1609 |
+
"execution_count": 26,
|
1610 |
+
"metadata": {},
|
1611 |
+
"outputs": [
|
1612 |
+
{
|
1613 |
+
"data": {
|
1614 |
+
"text/html": [
|
1615 |
+
"<div>\n",
|
1616 |
+
"<style scoped>\n",
|
1617 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1618 |
+
" vertical-align: middle;\n",
|
1619 |
+
" }\n",
|
1620 |
+
"\n",
|
1621 |
+
" .dataframe tbody tr th {\n",
|
1622 |
+
" vertical-align: top;\n",
|
1623 |
+
" }\n",
|
1624 |
+
"\n",
|
1625 |
+
" .dataframe thead th {\n",
|
1626 |
+
" text-align: right;\n",
|
1627 |
+
" }\n",
|
1628 |
+
"</style>\n",
|
1629 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1630 |
+
" <thead>\n",
|
1631 |
+
" <tr style=\"text-align: right;\">\n",
|
1632 |
+
" <th></th>\n",
|
1633 |
+
" <th>PromoInterval</th>\n",
|
1634 |
+
" <th>StoreType</th>\n",
|
1635 |
+
" <th>Assortment</th>\n",
|
1636 |
+
" <th>StateHoliday</th>\n",
|
1637 |
+
" <th>Store</th>\n",
|
1638 |
+
" <th>Customers</th>\n",
|
1639 |
+
" <th>Promo</th>\n",
|
1640 |
+
" <th>SchoolHoliday</th>\n",
|
1641 |
+
" <th>CompetitionDistance</th>\n",
|
1642 |
+
" <th>CompetitionOpenSinceMonth</th>\n",
|
1643 |
+
" <th>CompetitionOpenSinceYear</th>\n",
|
1644 |
+
" </tr>\n",
|
1645 |
+
" </thead>\n",
|
1646 |
+
" <tbody>\n",
|
1647 |
+
" <tr>\n",
|
1648 |
+
" <th>0</th>\n",
|
1649 |
+
" <td>Jan,Apr,Jul,Oct</td>\n",
|
1650 |
+
" <td>Small Shop</td>\n",
|
1651 |
+
" <td>basic</td>\n",
|
1652 |
+
" <td>0</td>\n",
|
1653 |
+
" <td>650</td>\n",
|
1654 |
+
" <td>636</td>\n",
|
1655 |
+
" <td>1</td>\n",
|
1656 |
+
" <td>0</td>\n",
|
1657 |
+
" <td>1420</td>\n",
|
1658 |
+
" <td>10</td>\n",
|
1659 |
+
" <td>2012</td>\n",
|
1660 |
+
" </tr>\n",
|
1661 |
+
" </tbody>\n",
|
1662 |
+
"</table>\n",
|
1663 |
+
"</div>"
|
1664 |
+
],
|
1665 |
+
"text/plain": [
|
1666 |
+
" PromoInterval StoreType Assortment StateHoliday Store Customers Promo \\\n",
|
1667 |
+
"0 Jan,Apr,Jul,Oct Small Shop basic 0 650 636 1 \n",
|
1668 |
+
"\n",
|
1669 |
+
" SchoolHoliday CompetitionDistance CompetitionOpenSinceMonth \\\n",
|
1670 |
+
"0 0 1420 10 \n",
|
1671 |
+
"\n",
|
1672 |
+
" CompetitionOpenSinceYear \n",
|
1673 |
+
"0 2012 "
|
1674 |
+
]
|
1675 |
+
},
|
1676 |
+
"execution_count": 26,
|
1677 |
+
"metadata": {},
|
1678 |
+
"output_type": "execute_result"
|
1679 |
+
}
|
1680 |
+
],
|
1681 |
+
"source": [
|
1682 |
+
"# 795018\n",
|
1683 |
+
"temp_df = pd.DataFrame(data = [[\"Jan,Apr,Jul,Oct\",\"Small Shop\",\"basic\",\"0\",\"650\",\"636\",\"1\",\"0\",\"1420\",\"10\",\"2012\"]], columns = X_test.columns)\n",
|
1684 |
+
"temp_df"
|
1685 |
+
]
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"cell_type": "code",
|
1689 |
+
"execution_count": 27,
|
1690 |
+
"metadata": {},
|
1691 |
+
"outputs": [
|
1692 |
+
{
|
1693 |
+
"data": {
|
1694 |
+
"text/plain": [
|
1695 |
+
"array([6357.158], dtype=float32)"
|
1696 |
+
]
|
1697 |
+
},
|
1698 |
+
"execution_count": 27,
|
1699 |
+
"metadata": {},
|
1700 |
+
"output_type": "execute_result"
|
1701 |
+
}
|
1702 |
+
],
|
1703 |
+
"source": [
|
1704 |
+
"pipe.predict(temp_df)"
|
1705 |
+
]
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"cell_type": "code",
|
1709 |
+
"execution_count": 31,
|
1710 |
+
"metadata": {},
|
1711 |
+
"outputs": [
|
1712 |
+
{
|
1713 |
+
"name": "stdout",
|
1714 |
+
"output_type": "stream",
|
1715 |
+
"text": [
|
1716 |
+
"Record at index 795018:\n",
|
1717 |
+
"PromoInterval Jan,Apr,Jul,Oct\n",
|
1718 |
+
"StoreType Small Shop\n",
|
1719 |
+
"Assortment basic\n",
|
1720 |
+
"StateHoliday 0\n",
|
1721 |
+
"Store 650\n",
|
1722 |
+
"Customers 636\n",
|
1723 |
+
"Promo 1\n",
|
1724 |
+
"SchoolHoliday 0\n",
|
1725 |
+
"CompetitionDistance 1420\n",
|
1726 |
+
"CompetitionOpenSinceMonth 10\n",
|
1727 |
+
"CompetitionOpenSinceYear 2012\n",
|
1728 |
+
"Sales 6322\n",
|
1729 |
+
"Name: 795018, dtype: object\n"
|
1730 |
+
]
|
1731 |
+
}
|
1732 |
+
],
|
1733 |
+
"source": [
|
1734 |
+
"# Assuming your DataFrame is named df\n",
|
1735 |
+
"record = df.iloc[795018]\n",
|
1736 |
+
"\n",
|
1737 |
+
"print(\"Record at index 795018:\")\n",
|
1738 |
+
"print(record)\n"
|
1739 |
+
]
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"cell_type": "code",
|
1743 |
+
"execution_count": 30,
|
1744 |
+
"metadata": {},
|
1745 |
+
"outputs": [
|
1746 |
+
{
|
1747 |
+
"name": "stdout",
|
1748 |
+
"output_type": "stream",
|
1749 |
+
"text": [
|
1750 |
+
"Unique values in PromoInterval: ['0' 'Jan,Apr,Jul,Oct' 'Feb,May,Aug,Nov' 'Mar,Jun,Sept,Dec']\n",
|
1751 |
+
"Unique values in StoreType: ['Large Store' 'Small Shop' 'Hypermarket' 'Medium Store']\n",
|
1752 |
+
"Unique values in Assortment: ['basic' 'extended' 'extra']\n",
|
1753 |
+
"Unique values in StateHoliday: [0 1]\n",
|
1754 |
+
"Unique values in Store: [ 1 2 3 ... 1115 876 292]\n",
|
1755 |
+
"Unique values in Customers: [ 555 625 821 ... 3900 36 4065]\n",
|
1756 |
+
"Unique values in Promo: [1 0]\n",
|
1757 |
+
"Unique values in SchoolHoliday: [1 0]\n",
|
1758 |
+
"Unique values in CompetitionDistance: [ 1270 570 14130 620 29910 310 24000 7520 2030 3160 960 1070\n",
|
1759 |
+
" 1300 4110 3270 50 13840 3240 2340 550 1040 4060 4590 430\n",
|
1760 |
+
" 2300 60 1200 2170 40 9800 2910 1320 2240 7660 540 4230\n",
|
1761 |
+
" 1090 260 180 1180 290 4880 9710 270 1060 18010 6260 10570\n",
|
1762 |
+
" 450 30360 7170 720 6620 420 7340 2840 5540 350 2050 3700\n",
|
1763 |
+
" 22560 410 250 1130 4840 17500 2200 1650 330 22440 19960 3510\n",
|
1764 |
+
" 3320 7910 2370 22390 2710 11810 1870 480 560 10690 2380 2410\n",
|
1765 |
+
" 240 16690 14620 1890 8780 8980 15140 17930 2440 150 5210 390\n",
|
1766 |
+
" 6190 1390 1930 2190 3300 46590 7890 1630 20930 4510 5740 680\n",
|
1767 |
+
" 3450 3580 2100 2290 3570 58260 16760 1410 760 3370 1350 2000\n",
|
1768 |
+
" 2460 900 920 5190 1730 25360 1700 1540 2930 16570 280 8050\n",
|
1769 |
+
" 8540 2090 2610 31830 4360 1780 16240 16420 3050 2020 2950 11840\n",
|
1770 |
+
" 8530 17110 2970 5340 1480 1160 3720 100 140 12540 980 2640\n",
|
1771 |
+
" 110 13090 4130 3770 1250 1710 5800 12610 9670 3560 1860 19360\n",
|
1772 |
+
" 850 5760 1470 1100 2770 520 16970 220 3850 4210 6360 20260\n",
|
1773 |
+
" 5140 490 5630 380 6870 300 11680 970 15050 4030 8650 190\n",
|
1774 |
+
" 3150 640 1640 1000 13530 2920 7930 10180 10800 17410 6680 3840\n",
|
1775 |
+
" 13570 4370 5710 1420 320 610 1110 780 6880 710 1310 4660\n",
|
1776 |
+
" 70 340 3520 22330 4630 80 27190 210 15340 1140 4580 360\n",
|
1777 |
+
" 4520 1450 16180 8480 3640 2960 7840 9260 2320 18640 6970 1220\n",
|
1778 |
+
" 2260 1290 1460 2740 800 6540 4150 2325 9580 19840 38630 120\n",
|
1779 |
+
" 15430 1950 2470 5100 18660 8740 11300 14160 38710 9000 3140 32330\n",
|
1780 |
+
" 8140 8400 13140 10070 3130 370 670 1840 4040 90 10600 1590\n",
|
1781 |
+
" 2280 8080 15770 18650 8090 9360 16490 1490 8880 5290 1500 9720\n",
|
1782 |
+
" 8970 2060 2890 2040 4490 13620 6470 5870 8250 1970 11120 1150\n",
|
1783 |
+
" 15710 160 2140 6630 1800 26130 130 6690 1600 460 2120 4820\n",
|
1784 |
+
" 10850 3620 23130 5360 9200 5830 4970 1080 8240 5890 1560 840\n",
|
1785 |
+
" 8460 4460 6210 6910 4650 1620 3530 2880 16350 12870 810 30030\n",
|
1786 |
+
" 13020 910 3900 2530 500 11400 1510 3970 5780 1850 75860 26450\n",
|
1787 |
+
" 3390 34050 1790 44320 4160 10890 3110 20390 5260 5300 5030 14810\n",
|
1788 |
+
" 8300 770 1940 7470 2550 2310 14300 2180 14960 660 4680 1740\n",
|
1789 |
+
" 1260 5470 2780 1610 990 13080 820 9070 1280 4740 8260 590\n",
|
1790 |
+
" 400 11260 20 22490 3330 2510 6900 18610 7160 40860 20620 12920\n",
|
1791 |
+
" 18160 5950 4700 600 650 7280 5020 580 8990 3760 2330 4260\n",
|
1792 |
+
" 3040 3000 3910 1910 1210 700 1010 4270 1340 2110 9230 1190\n",
|
1793 |
+
" 4400 2270 12700 20970 170 7250 1360 440 15720 3340 2540 33060\n",
|
1794 |
+
" 17340 8220 10950 10310 18370 2070 2490 730 8940 9910 5440 30\n",
|
1795 |
+
" 4080 6920 1170 10740 510 1690 2870 3350 11640 27530 9790 10170\n",
|
1796 |
+
" 7780 8040 530 230 7420 2130 14570 200 6930 7860 1680 2700\n",
|
1797 |
+
" 17080 15170 3250 4140 2850 20050 18760 15040 3030 3780 830 8550\n",
|
1798 |
+
" 7830 2900 11470 4870 12070 3200 8190 15320 3590 5650 5900 17540\n",
|
1799 |
+
" 40540 13990 15270 35280 860 1920 5980 6400 11900 4380 6710 1370\n",
|
1800 |
+
" 17650 4330 45740 3410 8670 13130 19780 2390 32240 26490 25430 9820\n",
|
1801 |
+
" 2630 20640 16990 630 5390 15490 3210 1530 9770 17280 5090 7180\n",
|
1802 |
+
" 9560 48330 1760 24770 3870 18620 12770 9640 2590 24530 16210 17570\n",
|
1803 |
+
" 7980 3290 6320 5070 3470 2720 14600 6890 27650 8860 5000 1120\n",
|
1804 |
+
" 940 14040 4770 3440 3020 6270 21770 740 21370 1020 9680 21810\n",
|
1805 |
+
" 10620 3860 29190 4570 7550 12430 19700 4450 18670 19370 18540 3920\n",
|
1806 |
+
" 3170 7290 1980 12480 3100 7240 18710 2620 6420 470 5150 15700\n",
|
1807 |
+
" 5460 22350 2810 2820 6860 18020 1670 2220 1430 870 6300 19830\n",
|
1808 |
+
" 9430 23620 9630 4180 3890 4420 21930 2480 3460 6560 5840 2230\n",
|
1809 |
+
" 19640 6480 4610 6330 1520 3740 1990 36410 7680 13750 27150 17290\n",
|
1810 |
+
" 26990 29070 3750 13170 5080 13190 5350 3230 3380 3430 8110 6250\n",
|
1811 |
+
" 12020 5010 18050 5380 16680 11540 2210 4300 5220 9990 10450 690\n",
|
1812 |
+
" 1830 5330 1400 3490 1900 1880 21790]\n",
|
1813 |
+
"Unique values in CompetitionOpenSinceMonth: [ 9 11 12 4 10 8 3 6 5 1 2 7]\n",
|
1814 |
+
"Unique values in CompetitionOpenSinceYear: [2008 2007 2006 2009 2015 2013 2014 2000 2011 2010 2005 1999 2003 2012\n",
|
1815 |
+
" 2004 2002 1961 1995 2001 1990 1994 1900 1998]\n",
|
1816 |
+
"Unique values in Sales: [ 5263 6064 8314 ... 660 17815 23303]\n"
|
1817 |
+
]
|
1818 |
+
}
|
1819 |
+
],
|
1820 |
+
"source": [
|
1821 |
+
"def print_unique_values(dataframe):\n",
|
1822 |
+
" for column in dataframe.columns:\n",
|
1823 |
+
" unique_values = dataframe[column].unique()\n",
|
1824 |
+
" print(f\"Unique values in {column}: {unique_values}\")\n",
|
1825 |
+
"\n",
|
1826 |
+
"# Example usage:\n",
|
1827 |
+
"print_unique_values(df)\n"
|
1828 |
+
]
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"cell_type": "markdown",
|
1832 |
+
"metadata": {},
|
1833 |
+
"source": [
|
1834 |
+
"## Save The Model "
|
1835 |
+
]
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"cell_type": "code",
|
1839 |
+
"execution_count": 32,
|
1840 |
+
"metadata": {},
|
1841 |
+
"outputs": [
|
1842 |
+
{
|
1843 |
+
"data": {
|
1844 |
+
"text/plain": [
|
1845 |
+
"['model2.pkl']"
|
1846 |
+
]
|
1847 |
+
},
|
1848 |
+
"execution_count": 32,
|
1849 |
+
"metadata": {},
|
1850 |
+
"output_type": "execute_result"
|
1851 |
+
}
|
1852 |
+
],
|
1853 |
+
"source": [
|
1854 |
+
"import joblib\n",
|
1855 |
+
"\n",
|
1856 |
+
"# joblib.dump(pipe, 'model2.pkl')"
|
1857 |
+
]
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"cell_type": "code",
|
1861 |
+
"execution_count": 33,
|
1862 |
+
"metadata": {},
|
1863 |
+
"outputs": [],
|
1864 |
+
"source": [
|
1865 |
+
"model1 = joblib.load(\"../models/model2.pkl\")"
|
1866 |
+
]
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"cell_type": "code",
|
1870 |
+
"execution_count": 34,
|
1871 |
+
"metadata": {},
|
1872 |
+
"outputs": [
|
1873 |
+
{
|
1874 |
+
"data": {
|
1875 |
+
"text/plain": [
|
1876 |
+
"array([6357.158], dtype=float32)"
|
1877 |
+
]
|
1878 |
+
},
|
1879 |
+
"execution_count": 34,
|
1880 |
+
"metadata": {},
|
1881 |
+
"output_type": "execute_result"
|
1882 |
+
}
|
1883 |
+
],
|
1884 |
+
"source": [
|
1885 |
+
"model1.predict(temp_df)"
|
1886 |
+
]
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"cell_type": "markdown",
|
1890 |
+
"metadata": {},
|
1891 |
+
"source": [
|
1892 |
+
"# ..."
|
1893 |
+
]
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"cell_type": "markdown",
|
1897 |
+
"metadata": {},
|
1898 |
+
"source": [
|
1899 |
+
"<hr>\n"
|
1900 |
+
]
|
1901 |
+
}
|
1902 |
+
],
|
1903 |
+
"metadata": {
|
1904 |
+
"kernelspec": {
|
1905 |
+
"display_name": "Python 3",
|
1906 |
+
"language": "python",
|
1907 |
+
"name": "python3"
|
1908 |
+
},
|
1909 |
+
"language_info": {
|
1910 |
+
"codemirror_mode": {
|
1911 |
+
"name": "ipython",
|
1912 |
+
"version": 3
|
1913 |
+
},
|
1914 |
+
"file_extension": ".py",
|
1915 |
+
"mimetype": "text/x-python",
|
1916 |
+
"name": "python",
|
1917 |
+
"nbconvert_exporter": "python",
|
1918 |
+
"pygments_lexer": "ipython3",
|
1919 |
+
"version": "3.10.11"
|
1920 |
+
}
|
1921 |
+
},
|
1922 |
+
"nbformat": 4,
|
1923 |
+
"nbformat_minor": 2
|
1924 |
+
}
|
Requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Joblib
|
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
# Load your trained model
|
8 |
+
model = joblib.load('models\model1.pkl')
|
9 |
+
|
10 |
+
|
11 |
+
# with open('models/model1.pkl', 'rb') as file:
|
12 |
+
# model = pickle.load(file)
|
13 |
+
|
14 |
+
# Function to predict sales
|
15 |
+
def predict_sales(input_data):
|
16 |
+
# Make predictions using the loaded model
|
17 |
+
sales_prediction = model.predict(input_data)
|
18 |
+
return sales_prediction
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
def main():
|
22 |
+
st.title('Sales Prediction App')
|
23 |
+
st.image("images\\r1.jpg", caption="Sunrise by the mountains")
|
24 |
+
|
25 |
+
# Input widgets
|
26 |
+
PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
|
27 |
+
|
28 |
+
# -----------------------------------------------------------------------------------------------
|
29 |
+
StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
|
30 |
+
Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
|
31 |
+
|
32 |
+
|
33 |
+
# Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
|
34 |
+
StateHoliday = st.radio("State Holiday", ["Yes", "No"])
|
35 |
+
StateHoliday = 1 if StateHoliday == "Yes" else 0
|
36 |
+
|
37 |
+
SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
|
38 |
+
SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
|
39 |
+
|
40 |
+
Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
|
41 |
+
Promo = 1 if Promo == "store is participating" else 0
|
42 |
+
# ----------------------------------------------------------------------------------------
|
43 |
+
|
44 |
+
|
45 |
+
Store = st.slider("Store", 1, 1115)
|
46 |
+
Customers = st.slider("Customers", 0, 7388)
|
47 |
+
CompetitionDistance = st.slider("Competition Distance", 20, 75860)
|
48 |
+
CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
|
49 |
+
CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
|
50 |
+
# ----------------------------------------------------------------------------------------
|
51 |
+
|
52 |
+
# Store user inputs
|
53 |
+
input_data = pd.DataFrame({
|
54 |
+
'PromoInterval': [PromoInterval],
|
55 |
+
'StoreType': [StoreType],
|
56 |
+
'Assortment': [Assortment],
|
57 |
+
'StateHoliday': [StateHoliday],
|
58 |
+
'Store': [Store],
|
59 |
+
'Customers': [Customers],
|
60 |
+
'Promo': [Promo],
|
61 |
+
'SchoolHoliday': [SchoolHoliday],
|
62 |
+
'CompetitionDistance': [CompetitionDistance],
|
63 |
+
'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
|
64 |
+
'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
|
65 |
+
})
|
66 |
+
|
67 |
+
# Display input data
|
68 |
+
st.subheader('Input Data:')
|
69 |
+
st.write(input_data)
|
70 |
+
|
71 |
+
# Predict sales
|
72 |
+
# if st.button('Predict Sales'):
|
73 |
+
# prediction = predict_sales(input_data)
|
74 |
+
# st.write('Predicted Sales:', prediction)
|
75 |
+
|
76 |
+
if st.button('Predict Sales'):
|
77 |
+
prediction = predict_sales(input_data)[0]
|
78 |
+
formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
|
79 |
+
st.write('Predicted Sales:', formatted_prediction)
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
main()
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# Record at index 795018:
|
88 |
+
# PromoInterval Jan,Apr,Jul,Oct
|
89 |
+
# StoreType Small Shop
|
90 |
+
# Assortment basic
|
91 |
+
# StateHoliday 0
|
92 |
+
# Store 650
|
93 |
+
# Customers 636
|
94 |
+
# Promo 1
|
95 |
+
# SchoolHoliday 0
|
96 |
+
# CompetitionDistance 1420
|
97 |
+
# CompetitionOpenSinceMonth 10
|
98 |
+
# CompetitionOpenSinceYear 2012
|
99 |
+
# Sales 6322
|
100 |
+
# Name: 795018, dtype: object
|
images/mg.png
ADDED
images/r1.jpg
ADDED
images/r1.png
ADDED
images/r2.png
ADDED
Git LFS Details
|
models/Rossmann_Model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a4264097df040b74694426b0b55cd70008790bec56cdeefa4eb7de0144096d1
|
3 |
+
size 22628002
|
models/model1.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f44f412a489f3fe693806f91c0b379f6fa5ba685d29f905dacaf223449ac6279
|
3 |
+
size 22632250
|
pages/Data Overview.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
# st.title("hi")
|
5 |
+
|
6 |
+
# Function for data overview
|
7 |
+
def show_data_overview():
|
8 |
+
# Load data from CSV file
|
9 |
+
data = pd.read_csv("Dataset\Rossmann_Cleaned_data.csv")
|
10 |
+
|
11 |
+
# Display data overview
|
12 |
+
st.subheader("Data Overview")
|
13 |
+
st.write(data)
|
14 |
+
|
15 |
+
|
16 |
+
show_data_overview() # Call the function to show data overview
|
pages/app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
# Load your trained model
|
8 |
+
model = joblib.load('models\model1.pkl')
|
9 |
+
|
10 |
+
|
11 |
+
# with open('models/model1.pkl', 'rb') as file:
|
12 |
+
# model = pickle.load(file)
|
13 |
+
|
14 |
+
# Function to predict sales
|
15 |
+
def predict_sales(input_data):
|
16 |
+
# Make predictions using the loaded model
|
17 |
+
sales_prediction = model.predict(input_data)
|
18 |
+
return sales_prediction
|
19 |
+
|
20 |
+
# Streamlit app
|
21 |
+
def main():
|
22 |
+
st.title('Sales Prediction App')
|
23 |
+
st.image("images\\r1.jpg", caption="Sunrise by the mountains")
|
24 |
+
|
25 |
+
# Input widgets
|
26 |
+
PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
|
27 |
+
|
28 |
+
# -----------------------------------------------------------------------------------------------
|
29 |
+
StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
|
30 |
+
Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
|
31 |
+
|
32 |
+
|
33 |
+
# Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
|
34 |
+
StateHoliday = st.radio("State Holiday", ["Yes", "No"])
|
35 |
+
StateHoliday = 1 if StateHoliday == "Yes" else 0
|
36 |
+
|
37 |
+
SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
|
38 |
+
SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
|
39 |
+
|
40 |
+
Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
|
41 |
+
Promo = 1 if Promo == "store is participating" else 0
|
42 |
+
# ----------------------------------------------------------------------------------------
|
43 |
+
|
44 |
+
|
45 |
+
Store = st.slider("Store", 1, 1115)
|
46 |
+
Customers = st.slider("Customers", 0, 7388)
|
47 |
+
CompetitionDistance = st.slider("Competition Distance", 20, 75860)
|
48 |
+
CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
|
49 |
+
CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
|
50 |
+
# ----------------------------------------------------------------------------------------
|
51 |
+
|
52 |
+
# Store user inputs
|
53 |
+
input_data = pd.DataFrame({
|
54 |
+
'PromoInterval': [PromoInterval],
|
55 |
+
'StoreType': [StoreType],
|
56 |
+
'Assortment': [Assortment],
|
57 |
+
'StateHoliday': [StateHoliday],
|
58 |
+
'Store': [Store],
|
59 |
+
'Customers': [Customers],
|
60 |
+
'Promo': [Promo],
|
61 |
+
'SchoolHoliday': [SchoolHoliday],
|
62 |
+
'CompetitionDistance': [CompetitionDistance],
|
63 |
+
'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
|
64 |
+
'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
|
65 |
+
})
|
66 |
+
|
67 |
+
# Display input data
|
68 |
+
st.subheader('Input Data:')
|
69 |
+
st.write(input_data)
|
70 |
+
|
71 |
+
# Predict sales
|
72 |
+
# if st.button('Predict Sales'):
|
73 |
+
# prediction = predict_sales(input_data)
|
74 |
+
# st.write('Predicted Sales:', prediction)
|
75 |
+
|
76 |
+
if st.button('Predict Sales'):
|
77 |
+
prediction = predict_sales(input_data)[0]
|
78 |
+
formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
|
79 |
+
st.write('Predicted Sales:', formatted_prediction)
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
main()
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
# Record at index 795018:
|
88 |
+
# PromoInterval Jan,Apr,Jul,Oct
|
89 |
+
# StoreType Small Shop
|
90 |
+
# Assortment basic
|
91 |
+
# StateHoliday 0
|
92 |
+
# Store 650
|
93 |
+
# Customers 636
|
94 |
+
# Promo 1
|
95 |
+
# SchoolHoliday 0
|
96 |
+
# CompetitionDistance 1420
|
97 |
+
# CompetitionOpenSinceMonth 10
|
98 |
+
# CompetitionOpenSinceYear 2012
|
99 |
+
# Sales 6322
|
100 |
+
# Name: 795018, dtype: object
|