manish72 commited on
Commit
5d45e2d
1 Parent(s): 2c56fd8

Upload 18 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Dataset/Rossmann[[:space:]]Stores[[:space:]]Data.csv filter=lfs diff=lfs merge=lfs -text
37
+ Dataset/Rossmann_Cleaned_data.csv filter=lfs diff=lfs merge=lfs -text
38
+ images/r2.png filter=lfs diff=lfs merge=lfs -text
39
+ Notebooks/01[[:space:]]copy.ipynb filter=lfs diff=lfs merge=lfs -text
40
+ Notebooks/01.ipynb filter=lfs diff=lfs merge=lfs -text
41
+ Notebooks/SalesPrediction_ML.ipynb filter=lfs diff=lfs merge=lfs -text
Dataset/Rossmann Stores Data.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6e4597c142d7d909a13d53b68a8e85c00b9a4c7b5ff40adbb37d6829cc1f4cc
3
+ size 38057952
Dataset/Rossmann_Cleaned_data.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7a26593831058de426161c0ee7e36cc3ee148b857930bd4111d8d10c6fbd93e
3
+ size 75241817
Dataset/store.csv ADDED
@@ -0,0 +1,1116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "Store","StoreType","Assortment","CompetitionDistance","CompetitionOpenSinceMonth","CompetitionOpenSinceYear","Promo2","Promo2SinceWeek","Promo2SinceYear","PromoInterval"
2
+ 1,"c","a",1270,9,2008,0,,,""
3
+ 2,"a","a",570,11,2007,1,13,2010,"Jan,Apr,Jul,Oct"
4
+ 3,"a","a",14130,12,2006,1,14,2011,"Jan,Apr,Jul,Oct"
5
+ 4,"c","c",620,9,2009,0,,,""
6
+ 5,"a","a",29910,4,2015,0,,,""
7
+ 6,"a","a",310,12,2013,0,,,""
8
+ 7,"a","c",24000,4,2013,0,,,""
9
+ 8,"a","a",7520,10,2014,0,,,""
10
+ 9,"a","c",2030,8,2000,0,,,""
11
+ 10,"a","a",3160,9,2009,0,,,""
12
+ 11,"a","c",960,11,2011,1,1,2012,"Jan,Apr,Jul,Oct"
13
+ 12,"a","c",1070,,,1,13,2010,"Jan,Apr,Jul,Oct"
14
+ 13,"d","a",310,,,1,45,2009,"Feb,May,Aug,Nov"
15
+ 14,"a","a",1300,3,2014,1,40,2011,"Jan,Apr,Jul,Oct"
16
+ 15,"d","c",4110,3,2010,1,14,2011,"Jan,Apr,Jul,Oct"
17
+ 16,"a","c",3270,,,0,,,""
18
+ 17,"a","a",50,12,2005,1,26,2010,"Jan,Apr,Jul,Oct"
19
+ 18,"d","c",13840,6,2010,1,14,2012,"Jan,Apr,Jul,Oct"
20
+ 19,"a","c",3240,,,1,22,2011,"Mar,Jun,Sept,Dec"
21
+ 20,"d","a",2340,5,2009,1,40,2014,"Jan,Apr,Jul,Oct"
22
+ 21,"c","c",550,10,1999,1,45,2009,"Jan,Apr,Jul,Oct"
23
+ 22,"a","a",1040,,,1,22,2012,"Jan,Apr,Jul,Oct"
24
+ 23,"d","a",4060,8,2005,0,,,""
25
+ 24,"a","c",4590,3,2000,1,40,2011,"Jan,Apr,Jul,Oct"
26
+ 25,"c","a",430,4,2003,0,,,""
27
+ 26,"d","a",2300,,,0,,,""
28
+ 27,"a","a",60,1,2005,1,5,2011,"Jan,Apr,Jul,Oct"
29
+ 28,"a","a",1200,10,2014,1,6,2015,"Mar,Jun,Sept,Dec"
30
+ 29,"d","c",2170,,,0,,,""
31
+ 30,"a","a",40,2,2014,1,10,2014,"Mar,Jun,Sept,Dec"
32
+ 31,"d","c",9800,7,2012,0,,,""
33
+ 32,"a","a",2910,,,1,45,2009,"Feb,May,Aug,Nov"
34
+ 33,"a","c",1320,5,2013,0,,,""
35
+ 34,"c","a",2240,9,2009,0,,,""
36
+ 35,"d","c",7660,10,2000,1,1,2012,"Jan,Apr,Jul,Oct"
37
+ 36,"a","c",540,6,2003,1,40,2014,"Jan,Apr,Jul,Oct"
38
+ 37,"c","a",4230,12,2014,0,,,""
39
+ 38,"d","a",1090,4,2007,0,,,""
40
+ 39,"a","a",260,10,2006,1,31,2013,"Feb,May,Aug,Nov"
41
+ 40,"a","a",180,,,1,45,2009,"Feb,May,Aug,Nov"
42
+ 41,"d","c",1180,,,1,31,2013,"Jan,Apr,Jul,Oct"
43
+ 42,"a","c",290,,,1,40,2011,"Jan,Apr,Jul,Oct"
44
+ 43,"d","a",4880,,,1,37,2009,"Jan,Apr,Jul,Oct"
45
+ 44,"a","a",540,6,2011,0,,,""
46
+ 45,"d","a",9710,2,2014,0,,,""
47
+ 46,"c","a",1200,9,2005,1,14,2011,"Jan,Apr,Jul,Oct"
48
+ 47,"a","c",270,4,2013,1,14,2013,"Jan,Apr,Jul,Oct"
49
+ 48,"a","a",1060,5,2012,0,,,""
50
+ 49,"d","c",18010,9,2007,0,,,""
51
+ 50,"d","a",6260,11,2009,0,,,""
52
+ 51,"a","c",10570,7,2013,1,9,2011,"Jan,Apr,Jul,Oct"
53
+ 52,"d","c",450,4,2014,1,39,2010,"Jan,Apr,Jul,Oct"
54
+ 53,"a","c",30360,9,2013,0,,,""
55
+ 54,"d","c",7170,8,2014,1,5,2013,"Feb,May,Aug,Nov"
56
+ 55,"a","a",720,11,2004,0,,,""
57
+ 56,"d","c",6620,3,2012,1,10,2014,"Mar,Jun,Sept,Dec"
58
+ 57,"d","c",420,6,2014,0,,,""
59
+ 58,"a","c",7340,5,2008,1,27,2012,"Jan,Apr,Jul,Oct"
60
+ 59,"a","c",2840,6,2007,1,14,2011,"Jan,Apr,Jul,Oct"
61
+ 60,"d","c",5540,10,2009,0,,,""
62
+ 61,"a","c",350,12,2007,1,1,2012,"Jan,Apr,Jul,Oct"
63
+ 62,"a","a",2050,,,0,,,""
64
+ 63,"c","c",3700,6,2010,1,18,2010,"Feb,May,Aug,Nov"
65
+ 64,"d","c",22560,,,1,14,2013,"Jan,Apr,Jul,Oct"
66
+ 65,"a","c",13840,5,2010,1,1,2012,"Jan,Apr,Jul,Oct"
67
+ 66,"d","a",7660,,,1,37,2009,"Jan,Apr,Jul,Oct"
68
+ 67,"a","c",410,2,2006,0,,,""
69
+ 68,"a","c",250,,,1,35,2012,"Mar,Jun,Sept,Dec"
70
+ 69,"c","c",1130,,,1,40,2011,"Jan,Apr,Jul,Oct"
71
+ 70,"c","c",4840,,,0,,,""
72
+ 71,"a","a",17500,8,2008,1,37,2009,"Mar,Jun,Sept,Dec"
73
+ 72,"a","a",2200,12,2009,1,13,2010,"Jan,Apr,Jul,Oct"
74
+ 73,"a","c",1650,9,2008,0,,,""
75
+ 74,"a","a",330,,,0,,,""
76
+ 75,"d","c",22440,12,2013,0,,,""
77
+ 76,"d","c",19960,3,2006,0,,,""
78
+ 77,"d","c",1090,8,2009,1,10,2014,"Jan,Apr,Jul,Oct"
79
+ 78,"a","a",3510,11,2006,1,5,2013,"Feb,May,Aug,Nov"
80
+ 79,"a","a",3320,,,0,,,""
81
+ 80,"d","a",7910,,,0,,,""
82
+ 81,"a","a",2370,3,2011,1,40,2014,"Jan,Apr,Jul,Oct"
83
+ 82,"a","a",22390,4,2008,1,37,2009,"Jan,Apr,Jul,Oct"
84
+ 83,"a","a",2710,,,0,,,""
85
+ 84,"a","c",11810,8,2014,0,,,""
86
+ 85,"b","a",1870,10,2011,0,,,""
87
+ 86,"a","a",480,2,2005,1,31,2013,"Jan,Apr,Jul,Oct"
88
+ 87,"a","a",560,12,2010,0,,,""
89
+ 88,"a","a",10690,10,2005,0,,,""
90
+ 89,"a","a",2380,7,2004,1,40,2014,"Jan,Apr,Jul,Oct"
91
+ 90,"a","a",330,11,2007,0,,,""
92
+ 91,"c","a",2410,,,1,35,2011,"Jan,Apr,Jul,Oct"
93
+ 92,"c","a",240,,,1,45,2009,"Feb,May,Aug,Nov"
94
+ 93,"a","a",16690,,,1,14,2011,"Jan,Apr,Jul,Oct"
95
+ 94,"d","c",14620,,,0,,,""
96
+ 95,"a","a",1890,10,2014,0,,,""
97
+ 96,"a","a",8780,2,2005,1,37,2009,"Jan,Apr,Jul,Oct"
98
+ 97,"d","c",8980,,,0,,,""
99
+ 98,"d","c",15140,12,2006,1,1,2012,"Jan,Apr,Jul,Oct"
100
+ 99,"c","c",2030,11,2003,1,22,2012,"Mar,Jun,Sept,Dec"
101
+ 100,"d","a",17930,,,0,,,""
102
+ 101,"d","c",2440,,,1,22,2012,"Mar,Jun,Sept,Dec"
103
+ 102,"a","a",150,12,2007,1,10,2014,"Mar,Jun,Sept,Dec"
104
+ 103,"d","c",5210,5,2015,0,,,""
105
+ 104,"a","a",390,6,2009,0,,,""
106
+ 105,"a","c",6190,,,1,23,2013,"Mar,Jun,Sept,Dec"
107
+ 106,"a","a",1390,8,2013,0,,,""
108
+ 107,"a","a",1930,9,2009,0,,,""
109
+ 108,"d","c",2190,9,2003,0,,,""
110
+ 109,"a","c",3300,11,2010,0,,,""
111
+ 110,"a","c",46590,4,2013,0,,,""
112
+ 111,"d","c",7890,,,1,37,2009,"Jan,Apr,Jul,Oct"
113
+ 112,"a","a",1630,9,2009,0,,,""
114
+ 113,"d","c",20930,11,1999,0,,,""
115
+ 114,"c","a",4510,,,1,48,2011,"Mar,Jun,Sept,Dec"
116
+ 115,"d","c",5740,4,2007,1,40,2014,"Jan,Apr,Jul,Oct"
117
+ 116,"a","a",680,4,2013,0,,,""
118
+ 117,"a","a",3450,9,2011,0,,,""
119
+ 118,"d","c",3580,9,2012,0,,,""
120
+ 119,"a","c",2100,2,2010,0,,,""
121
+ 120,"d","a",2290,12,2014,1,37,2009,"Jan,Apr,Jul,Oct"
122
+ 121,"a","a",3570,11,2009,1,36,2013,"Mar,Jun,Sept,Dec"
123
+ 122,"a","c",58260,4,2013,0,,,""
124
+ 123,"a","a",16760,9,2011,0,,,""
125
+ 124,"a","a",1410,4,2003,0,,,""
126
+ 125,"a","a",760,12,2005,0,,,""
127
+ 126,"d","a",3370,10,2014,1,18,2011,"Feb,May,Aug,Nov"
128
+ 127,"d","a",1350,12,2005,1,13,2010,"Jan,Apr,Jul,Oct"
129
+ 128,"d","c",2000,,,1,1,2013,"Jan,Apr,Jul,Oct"
130
+ 129,"a","a",2460,,,1,14,2011,"Jan,Apr,Jul,Oct"
131
+ 130,"c","a",900,,,1,13,2010,"Jan,Apr,Jul,Oct"
132
+ 131,"c","a",920,7,2015,0,,,""
133
+ 132,"d","c",1040,,,1,27,2012,"Jan,Apr,Jul,Oct"
134
+ 133,"a","a",270,8,2013,1,10,2014,"Mar,Jun,Sept,Dec"
135
+ 134,"a","a",1200,9,2008,0,,,""
136
+ 135,"d","a",5190,,,1,1,2013,"Jan,Apr,Jul,Oct"
137
+ 136,"a","c",2200,12,2010,1,22,2012,"Feb,May,Aug,Nov"
138
+ 137,"a","a",1730,7,2015,1,40,2014,"Jan,Apr,Jul,Oct"
139
+ 138,"a","c",25360,10,2014,0,,,""
140
+ 139,"a","a",1700,1,2008,1,14,2011,"Jan,Apr,Jul,Oct"
141
+ 140,"a","c",1090,7,2010,1,1,2013,"Jan,Apr,Jul,Oct"
142
+ 141,"c","c",1540,,,1,22,2012,"Mar,Jun,Sept,Dec"
143
+ 142,"a","a",1090,7,2002,0,,,""
144
+ 143,"d","a",2930,12,2002,0,,,""
145
+ 144,"a","c",16570,,,0,,,""
146
+ 145,"a","a",280,,,1,45,2009,"Feb,May,Aug,Nov"
147
+ 146,"d","c",8050,10,1961,1,48,2012,"Jan,Apr,Jul,Oct"
148
+ 147,"d","c",8540,,,0,,,""
149
+ 148,"a","a",2090,12,2008,0,,,""
150
+ 149,"d","a",2610,7,2006,1,14,2011,"Jan,Apr,Jul,Oct"
151
+ 150,"c","c",31830,3,2010,0,,,""
152
+ 151,"d","c",4360,10,2005,0,,,""
153
+ 152,"a","a",1780,,,0,,,""
154
+ 153,"a","a",16240,10,2000,1,18,2011,"Feb,May,Aug,Nov"
155
+ 154,"d","c",16420,,,0,,,""
156
+ 155,"d","a",3050,,,1,35,2010,"Jan,Apr,Jul,Oct"
157
+ 156,"a","a",2020,2,2011,1,14,2011,"Mar,Jun,Sept,Dec"
158
+ 157,"a","c",2950,10,2004,0,,,""
159
+ 158,"d","c",11840,,,1,31,2009,"Feb,May,Aug,Nov"
160
+ 159,"d","a",8530,3,2013,0,,,""
161
+ 160,"d","c",17110,11,2005,0,,,""
162
+ 161,"a","c",2970,3,2005,0,,,""
163
+ 162,"d","c",5340,3,2012,1,13,2010,"Jan,Apr,Jul,Oct"
164
+ 163,"a","a",1480,4,2009,0,,,""
165
+ 164,"a","a",1160,9,2005,1,13,2010,"Jan,Apr,Jul,Oct"
166
+ 165,"a","a",3720,4,2005,1,13,2010,"Jan,Apr,Jul,Oct"
167
+ 166,"a","c",100,4,2014,1,31,2013,"Jan,Apr,Jul,Oct"
168
+ 167,"a","a",140,4,2008,0,,,""
169
+ 168,"a","a",12540,,,0,,,""
170
+ 169,"d","a",980,7,2014,1,18,2014,"Feb,May,Aug,Nov"
171
+ 170,"a","a",1070,5,2015,1,14,2011,"Jan,Apr,Jul,Oct"
172
+ 171,"a","a",2640,,,0,,,""
173
+ 172,"a","a",110,,,1,40,2014,"Jan,Apr,Jul,Oct"
174
+ 173,"a","a",350,12,2012,0,,,""
175
+ 174,"a","a",13090,,,1,22,2012,"Jan,Apr,Jul,Oct"
176
+ 175,"c","a",4130,,,0,,,""
177
+ 176,"a","a",3770,,,0,,,""
178
+ 177,"a","a",1250,2,2004,1,5,2013,"Feb,May,Aug,Nov"
179
+ 178,"d","a",1710,,,0,,,""
180
+ 179,"a","c",480,,,0,,,""
181
+ 180,"d","a",5800,9,2010,0,,,""
182
+ 181,"a","a",12610,3,2013,1,14,2011,"Jan,Apr,Jul,Oct"
183
+ 182,"d","c",1390,,,1,9,2011,"Mar,Jun,Sept,Dec"
184
+ 183,"a","a",9670,,,0,,,""
185
+ 184,"d","c",3560,,,0,,,""
186
+ 185,"d","c",1860,5,2015,0,,,""
187
+ 186,"a","a",290,10,2011,1,40,2014,"Jan,Apr,Jul,Oct"
188
+ 187,"a","c",19360,,,0,,,""
189
+ 188,"d","a",850,,,1,18,2011,"Feb,May,Aug,Nov"
190
+ 189,"d","a",5760,7,2014,0,,,""
191
+ 190,"a","a",1470,12,2006,1,40,2014,"Jan,Apr,Jul,Oct"
192
+ 191,"a","a",1100,8,2013,1,40,2014,"Jan,Apr,Jul,Oct"
193
+ 192,"d","c",2770,3,2008,1,40,2014,"Jan,Apr,Jul,Oct"
194
+ 193,"a","a",520,,,0,,,""
195
+ 194,"d","c",16970,,,1,5,2013,"Feb,May,Aug,Nov"
196
+ 195,"a","c",220,,,0,,,""
197
+ 196,"c","a",3850,11,2005,1,14,2011,"Jan,Apr,Jul,Oct"
198
+ 197,"c","a",4210,3,2015,0,,,""
199
+ 198,"a","a",290,9,2002,1,13,2010,"Jan,Apr,Jul,Oct"
200
+ 199,"d","c",6360,12,2010,1,14,2012,"Mar,Jun,Sept,Dec"
201
+ 200,"a","a",1650,10,2000,0,,,""
202
+ 201,"d","a",20260,,,1,18,2014,"Mar,Jun,Sept,Dec"
203
+ 202,"d","c",5140,5,2010,0,,,""
204
+ 203,"c","c",490,11,2002,0,,,""
205
+ 204,"a","a",5630,12,2002,1,40,2014,"Jan,Apr,Jul,Oct"
206
+ 205,"a","a",110,12,2007,0,,,""
207
+ 206,"a","c",380,,,1,14,2012,"Jan,Apr,Jul,Oct"
208
+ 207,"a","a",6870,,,0,,,""
209
+ 208,"c","a",300,4,2006,0,,,""
210
+ 209,"a","c",11680,9,2011,1,31,2013,"Jan,Apr,Jul,Oct"
211
+ 210,"d","a",970,11,1999,1,5,2013,"Feb,May,Aug,Nov"
212
+ 211,"a","c",350,11,2006,0,,,""
213
+ 212,"a","c",15050,9,2008,0,,,""
214
+ 213,"d","c",4030,3,2014,1,1,2014,"Jan,Apr,Jul,Oct"
215
+ 214,"d","a",8650,7,2013,1,10,2014,"Jan,Apr,Jul,Oct"
216
+ 215,"d","a",150,,,1,45,2009,"Feb,May,Aug,Nov"
217
+ 216,"c","a",190,,,1,45,2009,"Feb,May,Aug,Nov"
218
+ 217,"c","a",3150,,,0,,,""
219
+ 218,"a","c",640,,,1,9,2011,"Mar,Jun,Sept,Dec"
220
+ 219,"a","a",1640,2,2013,0,,,""
221
+ 220,"a","a",1000,9,2008,0,,,""
222
+ 221,"d","c",13530,9,2013,0,,,""
223
+ 222,"a","a",2170,11,2008,0,,,""
224
+ 223,"d","c",2920,10,1995,1,27,2011,"Jan,Apr,Jul,Oct"
225
+ 224,"d","c",7930,,,1,1,2013,"Jan,Apr,Jul,Oct"
226
+ 225,"d","a",10180,5,2015,0,,,""
227
+ 226,"a","a",450,,,0,,,""
228
+ 227,"a","a",2370,,,0,,,""
229
+ 228,"d","c",10800,,,1,18,2011,"Feb,May,Aug,Nov"
230
+ 229,"d","c",17410,4,2007,1,14,2011,"Jan,Apr,Jul,Oct"
231
+ 230,"d","c",6680,9,2013,0,,,""
232
+ 231,"d","c",3840,10,2008,1,39,2010,"Feb,May,Aug,Nov"
233
+ 232,"c","c",13570,5,2010,1,10,2013,"Mar,Jun,Sept,Dec"
234
+ 233,"a","a",1890,,,0,,,""
235
+ 234,"d","a",4370,,,0,,,""
236
+ 235,"a","a",5710,3,2012,1,37,2009,"Jan,Apr,Jul,Oct"
237
+ 236,"a","a",1000,11,2007,0,,,""
238
+ 237,"a","a",1420,11,2007,0,,,""
239
+ 238,"a","a",320,,,1,45,2009,"Feb,May,Aug,Nov"
240
+ 239,"d","c",610,,,0,,,""
241
+ 240,"a","a",1110,5,2009,0,,,""
242
+ 241,"d","c",780,,,0,,,""
243
+ 242,"d","a",6880,9,2001,1,14,2011,"Jan,Apr,Jul,Oct"
244
+ 243,"a","a",310,,,1,5,2013,"Feb,May,Aug,Nov"
245
+ 244,"d","a",710,3,2012,1,1,2012,"Jan,Apr,Jul,Oct"
246
+ 245,"a","c",1310,,,0,,,""
247
+ 246,"c","a",4660,4,2013,0,,,""
248
+ 247,"d","c",70,11,2010,1,5,2013,"Feb,May,Aug,Nov"
249
+ 248,"a","c",340,9,2012,1,40,2012,"Jan,Apr,Jul,Oct"
250
+ 249,"d","c",18010,9,2014,0,,,""
251
+ 250,"d","a",3520,,,1,18,2012,"Feb,May,Aug,Nov"
252
+ 251,"a","c",340,,,0,,,""
253
+ 252,"d","c",22330,,,1,5,2010,"Feb,May,Aug,Nov"
254
+ 253,"a","c",250,,,1,5,2013,"Feb,May,Aug,Nov"
255
+ 254,"d","a",330,3,2008,1,1,2012,"Mar,Jun,Sept,Dec"
256
+ 255,"c","c",4630,3,2011,1,35,2011,"Feb,May,Aug,Nov"
257
+ 256,"a","c",80,9,2005,1,10,2014,"Mar,Jun,Sept,Dec"
258
+ 257,"a","a",420,12,2012,0,,,""
259
+ 258,"a","a",27190,7,2010,1,37,2009,"Jan,Apr,Jul,Oct"
260
+ 259,"b","b",210,,,0,,,""
261
+ 260,"a","a",540,10,2011,0,,,""
262
+ 261,"d","c",15340,4,2015,1,39,2009,"Jan,Apr,Jul,Oct"
263
+ 262,"b","a",1180,5,2013,0,,,""
264
+ 263,"a","c",1140,5,2013,1,40,2014,"Jan,Apr,Jul,Oct"
265
+ 264,"a","a",180,3,2014,0,,,""
266
+ 265,"a","a",4580,,,1,14,2015,"Jan,Apr,Jul,Oct"
267
+ 266,"a","c",360,3,2014,1,9,2011,"Mar,Jun,Sept,Dec"
268
+ 267,"c","a",2460,1,2012,0,,,""
269
+ 268,"a","a",4520,2,2014,0,,,""
270
+ 269,"a","c",60,6,2015,0,,,""
271
+ 270,"a","a",1450,7,2014,0,,,""
272
+ 271,"a","a",420,,,1,14,2011,"Jan,Apr,Jul,Oct"
273
+ 272,"a","a",16180,7,2003,1,14,2011,"Jan,Apr,Jul,Oct"
274
+ 273,"a","c",8480,,,0,,,""
275
+ 274,"b","b",3640,,,1,10,2013,"Jan,Apr,Jul,Oct"
276
+ 275,"d","a",300,5,2014,1,40,2014,"Jan,Apr,Jul,Oct"
277
+ 276,"a","a",2960,10,2014,1,36,2013,"Mar,Jun,Sept,Dec"
278
+ 277,"d","c",7840,,,1,31,2009,"Feb,May,Aug,Nov"
279
+ 278,"a","c",9260,2,2010,0,,,""
280
+ 279,"d","c",2320,,,1,40,2012,"Jan,Apr,Jul,Oct"
281
+ 280,"d","c",18640,9,2013,1,10,2014,"Mar,Jun,Sept,Dec"
282
+ 281,"d","c",6970,9,2011,0,,,""
283
+ 282,"a","a",1220,12,2010,0,,,""
284
+ 283,"a","a",2260,,,1,40,2014,"Jan,Apr,Jul,Oct"
285
+ 284,"d","a",1290,,,1,40,2014,"Jan,Apr,Jul,Oct"
286
+ 285,"a","a",2410,,,0,,,""
287
+ 286,"a","a",1460,4,2015,0,,,""
288
+ 287,"c","a",2740,5,2009,1,40,2014,"Jan,Apr,Jul,Oct"
289
+ 288,"d","a",800,,,1,14,2011,"Mar,Jun,Sept,Dec"
290
+ 289,"d","a",6540,12,2007,0,,,""
291
+ 290,"a","a",4150,5,2001,0,,,""
292
+ 291,"d","a",,,,0,,,""
293
+ 292,"a","a",1100,6,2009,0,,,""
294
+ 293,"c","c",140,11,2007,0,,,""
295
+ 294,"a","a",3150,5,2005,0,,,""
296
+ 295,"a","a",210,11,2000,1,36,2013,"Mar,Jun,Sept,Dec"
297
+ 296,"a","a",9580,5,2007,1,45,2014,"Feb,May,Aug,Nov"
298
+ 297,"a","a",2300,9,2010,0,,,""
299
+ 298,"d","a",19840,7,2009,0,,,""
300
+ 299,"d","c",38630,9,2012,0,,,""
301
+ 300,"a","c",120,4,2009,1,1,2012,"Jan,Apr,Jul,Oct"
302
+ 301,"a","c",4510,3,2015,0,,,""
303
+ 302,"d","c",2190,12,2007,1,9,2011,"Mar,Jun,Sept,Dec"
304
+ 303,"a","a",15430,11,2012,1,18,2011,"Feb,May,Aug,Nov"
305
+ 304,"a","a",1950,7,2015,0,,,""
306
+ 305,"c","c",2470,2,2005,1,31,2013,"Mar,Jun,Sept,Dec"
307
+ 306,"a","a",5100,4,2007,1,40,2014,"Jan,Apr,Jul,Oct"
308
+ 307,"a","a",18660,9,2002,0,,,""
309
+ 308,"a","a",1070,12,2006,1,13,2010,"Jan,Apr,Jul,Oct"
310
+ 309,"d","a",8740,,,1,37,2009,"Feb,May,Aug,Nov"
311
+ 310,"a","c",2290,,,1,10,2014,"Mar,Jun,Sept,Dec"
312
+ 311,"a","c",680,7,2005,0,,,""
313
+ 312,"d","a",11300,3,2012,0,,,""
314
+ 313,"d","c",14160,,,0,,,""
315
+ 314,"a","a",3560,10,2001,1,31,2013,"Feb,May,Aug,Nov"
316
+ 315,"a","c",38710,4,2013,0,,,""
317
+ 316,"d","a",9000,8,2001,0,,,""
318
+ 317,"d","a",3140,7,2013,1,14,2011,"Jan,Apr,Jul,Oct"
319
+ 318,"d","c",32330,3,2014,0,,,""
320
+ 319,"a","c",570,9,2012,1,27,2012,"Mar,Jun,Sept,Dec"
321
+ 320,"a","c",210,9,2012,0,,,""
322
+ 321,"c","c",8140,11,2013,1,10,2014,"Mar,Jun,Sept,Dec"
323
+ 322,"a","a",17500,4,2001,1,37,2009,"Jan,Apr,Jul,Oct"
324
+ 323,"d","c",8400,4,2012,1,5,2013,"Feb,May,Aug,Nov"
325
+ 324,"a","a",13140,,,1,14,2011,"Jan,Apr,Jul,Oct"
326
+ 325,"a","c",350,3,2011,1,22,2011,"Feb,May,Aug,Nov"
327
+ 326,"d","a",10070,5,2015,1,31,2013,"Feb,May,Aug,Nov"
328
+ 327,"c","c",1390,12,2004,0,,,""
329
+ 328,"a","a",3130,7,2002,0,,,""
330
+ 329,"a","a",1310,6,1990,1,22,2012,"Mar,Jun,Sept,Dec"
331
+ 330,"a","c",370,,,1,22,2012,"Mar,Jun,Sept,Dec"
332
+ 331,"a","c",670,,,1,14,2015,"Jan,Apr,Jul,Oct"
333
+ 332,"a","a",1840,3,2006,0,,,""
334
+ 333,"a","c",3720,2,2010,0,,,""
335
+ 334,"d","c",4040,8,2008,1,18,2013,"Mar,Jun,Sept,Dec"
336
+ 335,"b","a",90,,,1,31,2013,"Jan,Apr,Jul,Oct"
337
+ 336,"a","a",190,7,2014,0,,,""
338
+ 337,"d","c",10600,7,2005,1,45,2014,"Feb,May,Aug,Nov"
339
+ 338,"a","c",1590,,,1,37,2009,"Jan,Apr,Jul,Oct"
340
+ 339,"a","c",2280,,,1,10,2013,"Mar,Jun,Sept,Dec"
341
+ 340,"a","c",8080,,,0,,,""
342
+ 341,"a","a",190,9,2011,0,,,""
343
+ 342,"d","c",15770,,,1,40,2014,"Jan,Apr,Jul,Oct"
344
+ 343,"d","a",18650,4,2004,1,14,2014,"Jan,Apr,Jul,Oct"
345
+ 344,"a","c",300,4,2011,1,14,2011,"Jan,Apr,Jul,Oct"
346
+ 345,"a","a",120,,,1,22,2012,"Jan,Apr,Jul,Oct"
347
+ 346,"a","c",8090,,,0,,,""
348
+ 347,"d","c",9360,7,2013,1,22,2012,"Mar,Jun,Sept,Dec"
349
+ 348,"a","a",16490,,,1,22,2012,"Jan,Apr,Jul,Oct"
350
+ 349,"c","c",1490,4,2009,0,,,""
351
+ 350,"d","a",8880,,,1,14,2011,"Jan,Apr,Jul,Oct"
352
+ 351,"a","a",5290,11,2012,1,5,2013,"Feb,May,Aug,Nov"
353
+ 352,"d","c",6360,,,1,40,2012,"Mar,Jun,Sept,Dec"
354
+ 353,"b","b",900,,,1,14,2013,"Feb,May,Aug,Nov"
355
+ 354,"d","c",1500,10,2005,0,,,""
356
+ 355,"a","c",9720,8,2013,0,,,""
357
+ 356,"d","c",8970,12,2007,1,22,2012,"Feb,May,Aug,Nov"
358
+ 357,"a","a",2060,10,2008,0,,,""
359
+ 358,"a","a",2890,10,2003,0,,,""
360
+ 359,"d","c",4370,,,0,,,""
361
+ 360,"a","a",2040,6,2007,0,,,""
362
+ 361,"c","c",4490,5,2014,1,5,2013,"Feb,May,Aug,Nov"
363
+ 362,"c","c",340,,,0,,,""
364
+ 363,"a","a",250,9,2009,0,,,""
365
+ 364,"a","c",13620,,,1,10,2014,"Mar,Jun,Sept,Dec"
366
+ 365,"c","a",2410,,,1,45,2009,"Feb,May,Aug,Nov"
367
+ 366,"d","c",6470,12,2004,0,,,""
368
+ 367,"d","c",2640,9,2012,0,,,""
369
+ 368,"d","c",1450,4,2005,1,45,2009,"Feb,May,Aug,Nov"
370
+ 369,"d","c",5870,4,2014,0,,,""
371
+ 370,"d","a",8250,10,2000,1,31,2009,"Jan,Apr,Jul,Oct"
372
+ 371,"d","c",1970,7,2009,1,45,2014,"Feb,May,Aug,Nov"
373
+ 372,"d","c",4880,8,2010,1,18,2014,"Jan,Apr,Jul,Oct"
374
+ 373,"d","c",11120,,,1,22,2012,"Jan,Apr,Jul,Oct"
375
+ 374,"a","a",1150,9,2007,0,,,""
376
+ 375,"a","c",15710,2,2013,1,37,2009,"Jan,Apr,Jul,Oct"
377
+ 376,"a","a",160,8,2012,0,,,""
378
+ 377,"a","c",100,6,2010,1,18,2010,"Feb,May,Aug,Nov"
379
+ 378,"a","c",2140,8,2012,0,,,""
380
+ 379,"d","a",6630,,,0,,,""
381
+ 380,"a","a",2240,5,2013,1,10,2014,"Mar,Jun,Sept,Dec"
382
+ 381,"a","a",1800,11,2006,1,5,2013,"Feb,May,Aug,Nov"
383
+ 382,"c","c",26130,11,2002,0,,,""
384
+ 383,"a","c",350,,,0,,,""
385
+ 384,"a","c",130,,,1,14,2011,"Jan,Apr,Jul,Oct"
386
+ 385,"d","a",4580,9,2007,0,,,""
387
+ 386,"d","c",1460,4,2014,1,31,2013,"Jan,Apr,Jul,Oct"
388
+ 387,"c","a",210,,,1,36,2013,"Mar,Jun,Sept,Dec"
389
+ 388,"a","a",2260,,,0,,,""
390
+ 389,"a","c",6690,8,2011,0,,,""
391
+ 390,"a","c",1600,4,2009,0,,,""
392
+ 391,"a","a",460,11,2014,1,31,2013,"Feb,May,Aug,Nov"
393
+ 392,"a","a",2120,,,0,,,""
394
+ 393,"d","c",4820,3,2008,0,,,""
395
+ 394,"d","a",10850,,,0,,,""
396
+ 395,"a","a",3620,2,2013,0,,,""
397
+ 396,"a","c",23130,,,0,,,""
398
+ 397,"a","c",130,,,1,27,2013,"Feb,May,Aug,Nov"
399
+ 398,"c","c",1540,,,1,1,2012,"Jan,Apr,Jul,Oct"
400
+ 399,"a","a",5360,9,2012,1,40,2011,"Jan,Apr,Jul,Oct"
401
+ 400,"a","a",70,11,2004,1,14,2011,"Jan,Apr,Jul,Oct"
402
+ 401,"a","c",9200,10,2009,1,14,2012,"Jan,Apr,Jul,Oct"
403
+ 402,"c","c",5830,9,2011,1,13,2010,"Jan,Apr,Jul,Oct"
404
+ 403,"a","a",4970,7,2015,0,,,""
405
+ 404,"a","c",1420,,,1,10,2013,"Mar,Jun,Sept,Dec"
406
+ 405,"a","a",1080,4,2008,1,14,2011,"Jan,Apr,Jul,Oct"
407
+ 406,"d","c",8240,3,2001,1,10,2013,"Feb,May,Aug,Nov"
408
+ 407,"a","a",5890,10,2003,1,14,2011,"Feb,May,Aug,Nov"
409
+ 408,"c","a",1560,,,1,45,2009,"Feb,May,Aug,Nov"
410
+ 409,"d","c",840,,,1,1,2013,"Jan,Apr,Jul,Oct"
411
+ 410,"c","a",40,11,2011,1,22,2012,"Mar,Jun,Sept,Dec"
412
+ 411,"d","c",8460,,,0,,,""
413
+ 412,"d","c",4460,,,1,39,2010,"Jan,Apr,Jul,Oct"
414
+ 413,"a","c",760,9,2014,0,,,""
415
+ 414,"d","c",6210,,,1,1,2013,"Jan,Apr,Jul,Oct"
416
+ 415,"d","c",6910,4,2005,0,,,""
417
+ 416,"a","c",4650,6,2014,0,,,""
418
+ 417,"a","c",840,,,1,10,2014,"Jan,Apr,Jul,Oct"
419
+ 418,"a","a",1060,5,2009,1,27,2011,"Feb,May,Aug,Nov"
420
+ 419,"c","a",1620,9,2009,0,,,""
421
+ 420,"d","c",250,,,1,27,2012,"Jan,Apr,Jul,Oct"
422
+ 421,"c","c",3530,6,2012,1,35,2012,"Mar,Jun,Sept,Dec"
423
+ 422,"a","c",2880,,,0,,,""
424
+ 423,"b","a",1270,5,2014,0,,,""
425
+ 424,"d","c",1250,,,1,40,2011,"Jan,Apr,Jul,Oct"
426
+ 425,"d","c",1460,,,0,,,""
427
+ 426,"a","a",250,,,0,,,""
428
+ 427,"a","c",70,7,2005,1,13,2010,"Jan,Apr,Jul,Oct"
429
+ 428,"d","a",2960,12,2014,1,23,2015,"Mar,Jun,Sept,Dec"
430
+ 429,"d","c",16350,7,2005,1,31,2013,"Jan,Apr,Jul,Oct"
431
+ 430,"d","c",12870,10,2008,0,,,""
432
+ 431,"d","c",4520,,,0,,,""
433
+ 432,"a","a",810,5,2013,0,,,""
434
+ 433,"a","c",30030,11,2010,0,,,""
435
+ 434,"a","a",13020,8,2003,1,40,2014,"Jan,Apr,Jul,Oct"
436
+ 435,"a","a",910,,,0,,,""
437
+ 436,"d","a",2300,,,0,,,""
438
+ 437,"c","c",430,,,1,50,2010,"Jan,Apr,Jul,Oct"
439
+ 438,"d","c",1110,,,1,40,2012,"Jan,Apr,Jul,Oct"
440
+ 439,"a","a",1350,9,2009,0,,,""
441
+ 440,"d","a",3900,4,2005,1,45,2009,"Feb,May,Aug,Nov"
442
+ 441,"d","a",2530,,,0,,,""
443
+ 442,"c","a",500,,,1,45,2009,"Feb,May,Aug,Nov"
444
+ 443,"d","a",11400,12,2005,0,,,""
445
+ 444,"c","a",1700,11,2009,0,,,""
446
+ 445,"a","a",240,,,0,,,""
447
+ 446,"a","a",340,10,2000,1,31,2013,"Feb,May,Aug,Nov"
448
+ 447,"a","c",1510,9,2013,0,,,""
449
+ 448,"a","c",3970,9,2009,0,,,""
450
+ 449,"a","c",120,12,2014,1,37,2009,"Jan,Apr,Jul,Oct"
451
+ 450,"c","a",5780,11,1994,1,10,2014,"Mar,Jun,Sept,Dec"
452
+ 451,"a","a",2460,4,2009,1,13,2010,"Jan,Apr,Jul,Oct"
453
+ 452,"a","c",1850,8,2013,1,5,2011,"Feb,May,Aug,Nov"
454
+ 453,"a","c",75860,,,0,,,""
455
+ 454,"a","a",26450,,,0,,,""
456
+ 455,"d","c",7660,9,2010,0,,,""
457
+ 456,"a","c",140,,,0,,,""
458
+ 457,"d","c",13140,,,1,31,2013,"Jan,Apr,Jul,Oct"
459
+ 458,"c","a",3390,,,0,,,""
460
+ 459,"a","a",250,9,2008,1,5,2013,"Feb,May,Aug,Nov"
461
+ 460,"a","a",34050,4,2008,0,,,""
462
+ 461,"d","c",1790,7,2013,1,40,2013,"Jan,Apr,Jul,Oct"
463
+ 462,"a","a",44320,8,2008,0,,,""
464
+ 463,"a","a",4160,,,0,,,""
465
+ 464,"c","a",520,3,2009,0,,,""
466
+ 465,"d","c",10890,4,2005,0,,,""
467
+ 466,"a","c",3110,3,2003,0,,,""
468
+ 467,"a","c",20390,4,2008,0,,,""
469
+ 468,"c","c",5260,9,2012,0,,,""
470
+ 469,"c","c",710,9,2005,0,,,""
471
+ 470,"a","c",50,,,0,,,""
472
+ 471,"d","a",5300,,,1,45,2009,"Feb,May,Aug,Nov"
473
+ 472,"c","c",5030,8,2011,0,,,""
474
+ 473,"a","a",50,,,0,,,""
475
+ 474,"c","a",14810,,,1,14,2011,"Mar,Jun,Sept,Dec"
476
+ 475,"a","a",140,9,2005,0,,,""
477
+ 476,"d","a",8300,9,2006,0,,,""
478
+ 477,"d","a",770,7,2010,1,35,2010,"Jan,Apr,Jul,Oct"
479
+ 478,"d","c",1940,3,2012,0,,,""
480
+ 479,"a","a",320,12,2005,1,9,2011,"Feb,May,Aug,Nov"
481
+ 480,"a","a",300,11,2012,0,,,""
482
+ 481,"c","c",7470,,,1,44,2012,"Feb,May,Aug,Nov"
483
+ 482,"c","a",2550,10,2005,0,,,""
484
+ 483,"a","c",2310,9,2011,1,13,2010,"Jan,Apr,Jul,Oct"
485
+ 484,"a","c",14300,3,2011,0,,,""
486
+ 485,"d","c",3270,,,1,22,2012,"Jan,Apr,Jul,Oct"
487
+ 486,"a","a",2320,,,1,31,2013,"Jan,Apr,Jul,Oct"
488
+ 487,"d","c",2180,9,2012,1,40,2012,"Jan,Apr,Jul,Oct"
489
+ 488,"a","c",2890,4,2014,0,,,""
490
+ 489,"a","a",14960,11,2013,1,37,2009,"Jan,Apr,Jul,Oct"
491
+ 490,"a","a",660,4,2013,1,40,2014,"Jan,Apr,Jul,Oct"
492
+ 491,"d","c",4680,,,1,22,2012,"Mar,Jun,Sept,Dec"
493
+ 492,"a","a",1740,3,2008,1,40,2012,"Jan,Apr,Jul,Oct"
494
+ 493,"d","c",1150,,,1,14,2011,"Jan,Apr,Jul,Oct"
495
+ 494,"b","a",1260,6,2011,0,,,""
496
+ 495,"d","a",5470,,,1,37,2009,"Jan,Apr,Jul,Oct"
497
+ 496,"d","c",2780,6,2015,0,,,""
498
+ 497,"a","c",1610,,,0,,,""
499
+ 498,"a","a",990,,,1,40,2014,"Jan,Apr,Jul,Oct"
500
+ 499,"c","c",450,,,1,5,2013,"Feb,May,Aug,Nov"
501
+ 500,"d","c",10690,9,2007,1,5,2013,"Jan,Apr,Jul,Oct"
502
+ 501,"a","c",1620,9,2006,0,,,""
503
+ 502,"a","a",220,2,2002,1,37,2009,"Jan,Apr,Jul,Oct"
504
+ 503,"d","c",13080,9,2006,1,14,2011,"Jan,Apr,Jul,Oct"
505
+ 504,"c","c",820,,,0,,,""
506
+ 505,"a","a",350,,,1,5,2013,"Feb,May,Aug,Nov"
507
+ 506,"a","a",1850,12,2014,1,18,2011,"Feb,May,Aug,Nov"
508
+ 507,"a","c",9070,4,2011,1,37,2009,"Jan,Apr,Jul,Oct"
509
+ 508,"a","c",1280,,,1,40,2011,"Jan,Apr,Jul,Oct"
510
+ 509,"a","a",4740,7,2008,1,37,2009,"Jan,Apr,Jul,Oct"
511
+ 510,"a","c",8260,,,0,,,""
512
+ 511,"a","a",2060,9,2009,0,,,""
513
+ 512,"b","b",590,,,1,5,2013,"Mar,Jun,Sept,Dec"
514
+ 513,"a","a",400,8,2013,0,,,""
515
+ 514,"c","c",1200,7,2012,1,27,2012,"Jan,Apr,Jul,Oct"
516
+ 515,"d","c",11260,,,1,9,2011,"Feb,May,Aug,Nov"
517
+ 516,"a","c",20,,,1,35,2010,"Mar,Jun,Sept,Dec"
518
+ 517,"a","c",22490,,,0,,,""
519
+ 518,"d","c",3330,3,2015,1,13,2010,"Jan,Apr,Jul,Oct"
520
+ 519,"c","c",2510,8,2009,1,1,2012,"Jan,Apr,Jul,Oct"
521
+ 520,"a","c",6900,,,1,40,2012,"Mar,Jun,Sept,Dec"
522
+ 521,"d","a",18610,11,2002,1,48,2011,"Mar,Jun,Sept,Dec"
523
+ 522,"d","c",7160,11,2012,1,9,2011,"Jan,Apr,Jul,Oct"
524
+ 523,"c","c",50,11,2013,0,,,""
525
+ 524,"a","c",40860,9,2013,0,,,""
526
+ 525,"d","c",1870,9,2013,0,,,""
527
+ 526,"a","a",120,,,1,48,2011,"Mar,Jun,Sept,Dec"
528
+ 527,"d","c",5830,4,2008,0,,,""
529
+ 528,"a","c",20620,,,1,37,2009,"Jan,Apr,Jul,Oct"
530
+ 529,"d","c",12920,9,2012,0,,,""
531
+ 530,"a","c",18160,,,0,,,""
532
+ 531,"a","c",4030,,,0,,,""
533
+ 532,"a","c",1070,8,2010,0,,,""
534
+ 533,"a","c",5950,,,0,,,""
535
+ 534,"d","a",1200,9,2009,1,45,2009,"Jan,Apr,Jul,Oct"
536
+ 535,"a","a",3570,4,2007,0,,,""
537
+ 536,"a","c",4700,9,2002,1,31,2013,"Feb,May,Aug,Nov"
538
+ 537,"a","a",600,5,2002,1,1,2012,"Jan,Apr,Jul,Oct"
539
+ 538,"a","a",990,2,2010,0,,,""
540
+ 539,"a","a",770,5,2013,1,40,2014,"Jan,Apr,Jul,Oct"
541
+ 540,"d","c",810,,,1,48,2012,"Jan,Apr,Jul,Oct"
542
+ 541,"a","c",650,7,1990,0,,,""
543
+ 542,"a","a",7280,9,2012,1,1,2013,"Jan,Apr,Jul,Oct"
544
+ 543,"c","a",1080,12,2012,0,,,""
545
+ 544,"a","a",250,12,2001,1,13,2010,"Jan,Apr,Jul,Oct"
546
+ 545,"a","c",5020,5,2006,1,18,2014,"Feb,May,Aug,Nov"
547
+ 546,"a","a",580,1,2005,0,,,""
548
+ 547,"d","c",8990,11,2009,1,35,2010,"Mar,Jun,Sept,Dec"
549
+ 548,"d","c",3760,2,2009,0,,,""
550
+ 549,"a","c",2330,,,0,,,""
551
+ 550,"d","c",50,6,2015,0,,,""
552
+ 551,"a","c",2190,9,2013,0,,,""
553
+ 552,"a","a",4260,7,2008,1,37,2009,"Jan,Apr,Jul,Oct"
554
+ 553,"c","a",3040,9,2002,1,13,2010,"Jan,Apr,Jul,Oct"
555
+ 554,"c","c",1200,,,0,,,""
556
+ 555,"d","a",1560,1,2014,1,10,2013,"Mar,Jun,Sept,Dec"
557
+ 556,"d","c",1140,11,2014,0,,,""
558
+ 557,"a","a",250,,,0,,,""
559
+ 558,"a","a",3000,2,2010,0,,,""
560
+ 559,"d","a",3910,11,2006,1,5,2013,"Feb,May,Aug,Nov"
561
+ 560,"c","c",1910,7,2013,0,,,""
562
+ 561,"d","a",14300,,,0,,,""
563
+ 562,"b","c",1210,,,0,,,""
564
+ 563,"a","a",700,3,2015,1,10,2014,"Jan,Apr,Jul,Oct"
565
+ 564,"d","c",6540,,,1,14,2013,"Jan,Apr,Jul,Oct"
566
+ 565,"a","c",160,7,2007,0,,,""
567
+ 566,"a","a",3620,,,1,40,2013,"Jan,Apr,Jul,Oct"
568
+ 567,"c","a",1010,9,2012,1,18,2011,"Feb,May,Aug,Nov"
569
+ 568,"d","c",4270,,,1,1,2013,"Jan,Apr,Jul,Oct"
570
+ 569,"a","a",1340,9,2006,0,,,""
571
+ 570,"a","a",180,11,2006,0,,,""
572
+ 571,"d","a",2110,11,1995,1,40,2014,"Jan,Apr,Jul,Oct"
573
+ 572,"d","c",9230,4,2004,1,37,2009,"Jan,Apr,Jul,Oct"
574
+ 573,"a","a",1190,11,2012,1,36,2013,"Jan,Apr,Jul,Oct"
575
+ 574,"d","a",4400,,,0,,,""
576
+ 575,"a","a",960,5,2008,1,13,2010,"Jan,Apr,Jul,Oct"
577
+ 576,"c","a",50,11,2006,0,,,""
578
+ 577,"a","c",2270,,,1,35,2012,"Mar,Jun,Sept,Dec"
579
+ 578,"d","a",12700,4,2013,0,,,""
580
+ 579,"c","a",20970,11,2012,0,,,""
581
+ 580,"a","c",170,2,2009,0,,,""
582
+ 581,"a","a",7250,12,2013,0,,,""
583
+ 582,"a","a",120,,,0,,,""
584
+ 583,"a","a",2640,11,2002,0,,,""
585
+ 584,"d","a",1360,,,1,35,2010,"Mar,Jun,Sept,Dec"
586
+ 585,"d","c",440,4,2014,0,,,""
587
+ 586,"a","c",250,10,2008,0,,,""
588
+ 587,"d","c",330,9,2006,1,14,2011,"Jan,Apr,Jul,Oct"
589
+ 588,"d","c",15720,3,2010,0,,,""
590
+ 589,"a","c",360,,,1,18,2013,"Feb,May,Aug,Nov"
591
+ 590,"d","c",4520,9,2010,1,31,2013,"Jan,Apr,Jul,Oct"
592
+ 591,"a","c",3340,,,1,22,2012,"Mar,Jun,Sept,Dec"
593
+ 592,"a","a",2540,6,2005,0,,,""
594
+ 593,"a","c",33060,3,2010,0,,,""
595
+ 594,"a","a",1790,10,2011,0,,,""
596
+ 595,"c","c",1130,6,2015,0,,,""
597
+ 596,"c","a",290,9,2006,0,,,""
598
+ 597,"a","a",150,9,2008,1,1,2012,"Mar,Jun,Sept,Dec"
599
+ 598,"c","a",550,12,2013,1,40,2014,"Jan,Apr,Jul,Oct"
600
+ 599,"d","c",580,11,2014,0,,,""
601
+ 600,"d","c",17340,6,2010,1,9,2011,"Feb,May,Aug,Nov"
602
+ 601,"d","a",8220,4,2014,1,14,2011,"Jan,Apr,Jul,Oct"
603
+ 602,"a","a",2710,7,2001,1,22,2012,"Mar,Jun,Sept,Dec"
604
+ 603,"a","a",340,4,2007,1,13,2010,"Jan,Apr,Jul,Oct"
605
+ 604,"d","a",10950,3,2014,0,,,""
606
+ 605,"d","a",10310,4,2003,1,37,2009,"Jan,Apr,Jul,Oct"
607
+ 606,"a","a",2260,11,2007,0,,,""
608
+ 607,"a","a",350,8,1999,1,14,2011,"Jan,Apr,Jul,Oct"
609
+ 608,"a","c",18370,2,2013,1,14,2011,"Jan,Apr,Jul,Oct"
610
+ 609,"a","a",2070,9,2007,0,,,""
611
+ 610,"a","a",660,1,2007,0,,,""
612
+ 611,"a","a",8080,12,2002,1,40,2014,"Jan,Apr,Jul,Oct"
613
+ 612,"d","c",2490,11,2012,1,31,2009,"Jan,Apr,Jul,Oct"
614
+ 613,"c","a",250,6,2007,1,14,2011,"Jan,Apr,Jul,Oct"
615
+ 614,"a","a",1160,12,2012,0,,,""
616
+ 615,"d","a",730,8,2007,0,,,""
617
+ 616,"a","c",3040,8,2011,1,35,2010,"Mar,Jun,Sept,Dec"
618
+ 617,"a","c",8940,,,1,9,2011,"Jan,Apr,Jul,Oct"
619
+ 618,"d","c",9910,,,0,,,""
620
+ 619,"a","a",1600,6,2006,1,45,2009,"Feb,May,Aug,Nov"
621
+ 620,"d","c",5440,,,1,40,2014,"Jan,Apr,Jul,Oct"
622
+ 621,"a","a",30,7,2002,0,,,""
623
+ 622,"a","c",,,,0,,,""
624
+ 623,"a","a",4080,3,2011,1,13,2010,"Jan,Apr,Jul,Oct"
625
+ 624,"a","c",6920,9,2011,0,,,""
626
+ 625,"a","a",1170,4,2011,1,22,2012,"Feb,May,Aug,Nov"
627
+ 626,"c","c",10740,11,2013,0,,,""
628
+ 627,"c","c",3970,3,2010,0,,,""
629
+ 628,"a","c",2180,,,0,,,""
630
+ 629,"d","a",510,7,2014,1,23,2015,"Mar,Jun,Sept,Dec"
631
+ 630,"a","a",1690,4,2015,0,,,""
632
+ 631,"d","c",2870,,,1,35,2012,"Mar,Jun,Sept,Dec"
633
+ 632,"a","a",3350,2,2010,0,,,""
634
+ 633,"d","a",11640,4,2005,1,22,2011,"Jan,Apr,Jul,Oct"
635
+ 634,"d","a",18610,,,0,,,""
636
+ 635,"a","a",27530,4,2014,0,,,""
637
+ 636,"c","a",720,10,2004,1,13,2010,"Jan,Apr,Jul,Oct"
638
+ 637,"d","c",9790,,,1,31,2009,"Feb,May,Aug,Nov"
639
+ 638,"d","a",10170,11,2001,0,,,""
640
+ 639,"a","a",7780,11,2006,0,,,""
641
+ 640,"d","c",8040,,,0,,,""
642
+ 641,"a","c",610,12,2003,1,36,2013,"Mar,Jun,Sept,Dec"
643
+ 642,"c","c",530,4,2005,1,35,2010,"Mar,Jun,Sept,Dec"
644
+ 643,"a","a",230,6,2010,1,18,2010,"Feb,May,Aug,Nov"
645
+ 644,"c","a",4030,12,2004,1,14,2011,"Jan,Apr,Jul,Oct"
646
+ 645,"a","a",90,,,1,45,2009,"Feb,May,Aug,Nov"
647
+ 646,"a","a",620,9,2014,0,,,""
648
+ 647,"a","c",7420,4,2013,0,,,""
649
+ 648,"d","a",2130,12,2008,0,,,""
650
+ 649,"a","a",14570,11,2002,0,,,""
651
+ 650,"a","a",1420,10,2012,1,40,2014,"Jan,Apr,Jul,Oct"
652
+ 651,"a","a",200,,,0,,,""
653
+ 652,"a","a",20390,,,0,,,""
654
+ 653,"d","c",7520,7,2014,1,45,2009,"Feb,May,Aug,Nov"
655
+ 654,"c","a",6930,9,2006,0,,,""
656
+ 655,"d","c",960,11,2012,1,5,2013,"Feb,May,Aug,Nov"
657
+ 656,"d","a",410,4,2009,1,13,2010,"Jan,Apr,Jul,Oct"
658
+ 657,"c","c",80,1,2006,1,10,2014,"Jan,Apr,Jul,Oct"
659
+ 658,"d","c",520,,,1,37,2009,"Jan,Apr,Jul,Oct"
660
+ 659,"d","a",1590,3,2012,0,,,""
661
+ 660,"a","a",1200,11,2006,1,40,2014,"Jan,Apr,Jul,Oct"
662
+ 661,"d","c",2140,7,2013,0,,,""
663
+ 662,"d","a",1070,,,0,,,""
664
+ 663,"a","c",7860,5,2005,0,,,""
665
+ 664,"d","c",1680,10,2005,0,,,""
666
+ 665,"a","a",90,12,2012,1,14,2011,"Jan,Apr,Jul,Oct"
667
+ 666,"c","c",2700,,,1,9,2011,"Mar,Jun,Sept,Dec"
668
+ 667,"d","c",2870,9,2012,0,,,""
669
+ 668,"c","a",1270,9,2010,0,,,""
670
+ 669,"d","a",17080,7,2012,1,31,2013,"Jan,Apr,Jul,Oct"
671
+ 670,"a","a",2060,,,1,45,2009,"Feb,May,Aug,Nov"
672
+ 671,"a","c",2070,2,2008,1,39,2010,"Jan,Apr,Jul,Oct"
673
+ 672,"c","a",240,9,2002,0,,,""
674
+ 673,"d","c",15170,,,1,5,2013,"Feb,May,Aug,Nov"
675
+ 674,"a","a",2640,12,2005,1,31,2013,"Feb,May,Aug,Nov"
676
+ 675,"a","a",2100,8,2013,1,14,2011,"Jan,Apr,Jul,Oct"
677
+ 676,"b","b",1410,9,2008,0,,,""
678
+ 677,"d","a",1740,6,2014,1,45,2009,"Feb,May,Aug,Nov"
679
+ 678,"c","a",3250,,,1,40,2011,"Jan,Apr,Jul,Oct"
680
+ 679,"a","a",4140,9,2012,0,,,""
681
+ 680,"c","a",170,,,1,35,2012,"Mar,Jun,Sept,Dec"
682
+ 681,"a","c",620,,,1,1,2014,"Mar,Jun,Sept,Dec"
683
+ 682,"b","a",150,9,2006,0,,,""
684
+ 683,"a","a",2850,7,2014,0,,,""
685
+ 684,"d","c",680,,,1,22,2012,"Jan,Apr,Jul,Oct"
686
+ 685,"a","a",650,11,2013,1,37,2009,"Jan,Apr,Jul,Oct"
687
+ 686,"a","a",20050,4,2002,0,,,""
688
+ 687,"d","c",2770,,,0,,,""
689
+ 688,"a","a",18760,8,2015,1,14,2011,"Jan,Apr,Jul,Oct"
690
+ 689,"d","a",15040,10,2004,0,,,""
691
+ 690,"a","a",100,,,0,,,""
692
+ 691,"d","c",3030,,,1,37,2009,"Jan,Apr,Jul,Oct"
693
+ 692,"a","a",40,8,2001,0,,,""
694
+ 693,"d","a",450,,,1,40,2011,"Jan,Apr,Jul,Oct"
695
+ 694,"a","c",460,11,2012,1,40,2014,"Jan,Apr,Jul,Oct"
696
+ 695,"a","a",550,7,2011,1,1,2012,"Jan,Apr,Jul,Oct"
697
+ 696,"a","c",430,,,0,,,""
698
+ 697,"d","a",3780,,,1,40,2011,"Jan,Apr,Jul,Oct"
699
+ 698,"a","a",1790,5,2011,0,,,""
700
+ 699,"a","a",180,,,1,5,2013,"Jan,Apr,Jul,Oct"
701
+ 700,"a","c",830,,,1,27,2013,"Jan,Apr,Jul,Oct"
702
+ 701,"d","a",1450,3,2012,1,14,2011,"Jan,Apr,Jul,Oct"
703
+ 702,"a","a",8550,9,2001,1,45,2009,"Feb,May,Aug,Nov"
704
+ 703,"a","a",80,6,2005,0,,,""
705
+ 704,"d","c",1910,4,2009,0,,,""
706
+ 705,"a","a",4140,9,2012,1,18,2011,"Feb,May,Aug,Nov"
707
+ 706,"d","a",7830,9,2014,1,10,2014,"Mar,Jun,Sept,Dec"
708
+ 707,"a","c",2900,7,1990,0,,,""
709
+ 708,"c","c",11470,10,2009,1,18,2014,"Jan,Apr,Jul,Oct"
710
+ 709,"a","a",500,12,2010,0,,,""
711
+ 710,"d","a",1500,9,2008,1,14,2011,"Jan,Apr,Jul,Oct"
712
+ 711,"d","a",17110,3,2007,1,5,2010,"Jan,Apr,Jul,Oct"
713
+ 712,"a","a",4870,9,2007,1,45,2009,"Jan,Apr,Jul,Oct"
714
+ 713,"a","c",220,,,1,10,2014,"Jan,Apr,Jul,Oct"
715
+ 714,"d","c",12070,10,2005,1,10,2013,"Jan,Apr,Jul,Oct"
716
+ 715,"a","a",14810,6,2014,0,,,""
717
+ 716,"d","a",3200,1,2008,1,22,2011,"Jan,Apr,Jul,Oct"
718
+ 717,"d","c",310,,,1,40,2011,"Jan,Apr,Jul,Oct"
719
+ 718,"a","a",1100,6,2015,0,,,""
720
+ 719,"c","c",8190,,,1,45,2009,"Feb,May,Aug,Nov"
721
+ 720,"a","c",15320,3,2011,1,14,2013,"Feb,May,Aug,Nov"
722
+ 721,"a","c",3590,9,2012,1,22,2012,"Mar,Jun,Sept,Dec"
723
+ 722,"a","a",50,,,0,,,""
724
+ 723,"d","c",5650,9,2008,1,5,2013,"Feb,May,Aug,Nov"
725
+ 724,"d","c",5900,,,0,,,""
726
+ 725,"d","c",17540,6,2012,0,,,""
727
+ 726,"a","c",40540,2,2002,0,,,""
728
+ 727,"a","a",2050,3,2007,0,,,""
729
+ 728,"d","a",13990,,,1,14,2011,"Jan,Apr,Jul,Oct"
730
+ 729,"c","c",8980,6,2011,0,,,""
731
+ 730,"c","a",1190,9,2013,0,,,""
732
+ 731,"a","a",15270,,,1,10,2014,"Jan,Apr,Jul,Oct"
733
+ 732,"a","c",35280,,,0,,,""
734
+ 733,"b","b",860,10,1999,0,,,""
735
+ 734,"a","a",220,,,1,36,2013,"Mar,Jun,Sept,Dec"
736
+ 735,"d","c",1920,4,2005,0,,,""
737
+ 736,"c","c",1650,,,1,14,2011,"Jan,Apr,Jul,Oct"
738
+ 737,"a","a",100,5,2007,1,31,2013,"Jan,Apr,Jul,Oct"
739
+ 738,"d","c",5980,10,2005,0,,,""
740
+ 739,"d","c",2770,6,2008,1,22,2011,"Jan,Apr,Jul,Oct"
741
+ 740,"d","a",6400,3,2014,0,,,""
742
+ 741,"d","c",11900,,,0,,,""
743
+ 742,"d","c",4380,,,0,,,""
744
+ 743,"a","a",6710,11,2003,1,14,2012,"Jan,Apr,Jul,Oct"
745
+ 744,"a","a",1370,12,2011,1,40,2014,"Jan,Apr,Jul,Oct"
746
+ 745,"a","a",17650,11,2013,1,37,2009,"Jan,Apr,Jul,Oct"
747
+ 746,"d","c",4330,2,2011,1,35,2011,"Mar,Jun,Sept,Dec"
748
+ 747,"c","c",45740,8,2008,0,,,""
749
+ 748,"d","a",2380,3,2010,1,14,2011,"Jan,Apr,Jul,Oct"
750
+ 749,"a","a",3410,8,2011,1,14,2015,"Jan,Apr,Jul,Oct"
751
+ 750,"d","a",8670,2,2002,1,14,2011,"Jan,Apr,Jul,Oct"
752
+ 751,"a","a",650,10,2006,0,,,""
753
+ 752,"a","a",970,3,2013,1,31,2013,"Feb,May,Aug,Nov"
754
+ 753,"d","c",540,11,2012,1,35,2010,"Mar,Jun,Sept,Dec"
755
+ 754,"c","c",380,5,2008,1,10,2014,"Mar,Jun,Sept,Dec"
756
+ 755,"d","c",13130,12,2003,0,,,""
757
+ 756,"a","c",50,,,1,40,2011,"Jan,Apr,Jul,Oct"
758
+ 757,"a","c",3450,,,0,,,""
759
+ 758,"a","c",19780,6,2008,0,,,""
760
+ 759,"a","a",110,11,2012,1,31,2013,"Feb,May,Aug,Nov"
761
+ 760,"a","a",560,1,2011,0,,,""
762
+ 761,"a","a",2390,9,2012,0,,,""
763
+ 762,"d","c",1280,,,1,10,2013,"Mar,Jun,Sept,Dec"
764
+ 763,"d","c",32240,3,2010,0,,,""
765
+ 764,"a","c",26490,,,1,10,2014,"Mar,Jun,Sept,Dec"
766
+ 765,"a","c",25430,5,1999,1,37,2009,"Jan,Apr,Jul,Oct"
767
+ 766,"d","c",9820,,,0,,,""
768
+ 767,"a","c",13080,,,0,,,""
769
+ 768,"a","c",2630,9,2012,0,,,""
770
+ 769,"b","b",840,,,1,48,2012,"Jan,Apr,Jul,Oct"
771
+ 770,"a","c",100,4,2015,0,,,""
772
+ 771,"a","a",20640,9,2007,0,,,""
773
+ 772,"d","c",1850,,,0,,,""
774
+ 773,"a","a",200,,,0,,,""
775
+ 774,"a","c",640,9,2013,0,,,""
776
+ 775,"d","c",6970,12,2005,1,22,2011,"Jan,Apr,Jul,Oct"
777
+ 776,"c","a",700,4,2009,1,14,2011,"Jan,Apr,Jul,Oct"
778
+ 777,"d","c",8250,10,2004,1,10,2013,"Mar,Jun,Sept,Dec"
779
+ 778,"a","a",340,6,2003,1,40,2014,"Jan,Apr,Jul,Oct"
780
+ 779,"a","a",16990,4,2004,0,,,""
781
+ 780,"a","a",18160,,,0,,,""
782
+ 781,"a","a",630,4,2007,0,,,""
783
+ 782,"c","c",5390,8,2003,1,1,2012,"Jan,Apr,Jul,Oct"
784
+ 783,"d","c",15490,,,0,,,""
785
+ 784,"a","a",560,10,2014,1,10,2014,"Jan,Apr,Jul,Oct"
786
+ 785,"d","c",970,7,2005,1,31,2013,"Feb,May,Aug,Nov"
787
+ 786,"a","a",290,11,2006,1,5,2013,"Feb,May,Aug,Nov"
788
+ 787,"c","c",3210,6,2009,0,,,""
789
+ 788,"a","c",1530,3,2013,0,,,""
790
+ 789,"a","c",9770,7,2003,0,,,""
791
+ 790,"d","c",9070,12,2003,0,,,""
792
+ 791,"a","a",5950,4,2007,0,,,""
793
+ 792,"d","a",17280,10,2009,1,18,2011,"Feb,May,Aug,Nov"
794
+ 793,"d","a",2710,7,2006,0,,,""
795
+ 794,"c","c",5090,9,2006,0,,,""
796
+ 795,"d","a",510,,,1,35,2010,"Mar,Jun,Sept,Dec"
797
+ 796,"a","c",7180,11,2012,0,,,""
798
+ 797,"a","a",2090,10,2012,1,40,2014,"Jan,Apr,Jul,Oct"
799
+ 798,"a","a",9560,4,2001,0,,,""
800
+ 799,"a","c",2700,,,0,,,""
801
+ 800,"d","a",2020,7,2014,0,,,""
802
+ 801,"d","a",48330,4,2013,0,,,""
803
+ 802,"a","c",910,,,1,22,2011,"Feb,May,Aug,Nov"
804
+ 803,"d","a",1760,,,1,10,2014,"Mar,Jun,Sept,Dec"
805
+ 804,"c","c",2100,,,1,1,2013,"Jan,Apr,Jul,Oct"
806
+ 805,"d","a",24770,10,2011,1,10,2014,"Mar,Jun,Sept,Dec"
807
+ 806,"d","a",260,,,1,44,2010,"Feb,May,Aug,Nov"
808
+ 807,"a","a",3870,4,2008,0,,,""
809
+ 808,"a","a",18620,,,1,31,2009,"Feb,May,Aug,Nov"
810
+ 809,"a","a",12770,10,2000,0,,,""
811
+ 810,"d","c",9640,11,2013,0,,,""
812
+ 811,"a","a",410,9,2012,0,,,""
813
+ 812,"d","a",2590,9,2012,0,,,""
814
+ 813,"a","a",1560,9,2003,0,,,""
815
+ 814,"d","c",24530,7,2013,0,,,""
816
+ 815,"a","a",590,1,1900,1,40,2014,"Jan,Apr,Jul,Oct"
817
+ 816,"c","c",460,,,0,,,""
818
+ 817,"a","a",140,3,2006,0,,,""
819
+ 818,"d","a",490,,,1,35,2010,"Mar,Jun,Sept,Dec"
820
+ 819,"a","c",720,10,2014,0,,,""
821
+ 820,"a","c",1650,,,1,40,2014,"Jan,Apr,Jul,Oct"
822
+ 821,"a","a",1700,9,2009,0,,,""
823
+ 822,"a","c",410,11,2010,1,48,2010,"Mar,Jun,Sept,Dec"
824
+ 823,"a","c",16210,11,2010,0,,,""
825
+ 824,"a","a",17570,,,0,,,""
826
+ 825,"a","a",380,5,2011,1,40,2014,"Jan,Apr,Jul,Oct"
827
+ 826,"a","c",7980,6,2005,0,,,""
828
+ 827,"a","c",250,1,2005,0,,,""
829
+ 828,"d","c",3290,12,2014,0,,,""
830
+ 829,"c","a",110,,,0,,,""
831
+ 830,"a","c",6320,,,1,5,2011,"Jan,Apr,Jul,Oct"
832
+ 831,"a","a",800,6,2007,0,,,""
833
+ 832,"d","a",5070,,,1,45,2009,"Feb,May,Aug,Nov"
834
+ 833,"d","c",3290,12,1999,1,35,2010,"Mar,Jun,Sept,Dec"
835
+ 834,"a","a",3470,3,2012,0,,,""
836
+ 835,"a","a",2890,12,2007,1,10,2014,"Mar,Jun,Sept,Dec"
837
+ 836,"a","a",2720,9,2012,0,,,""
838
+ 837,"a","c",14600,4,2015,0,,,""
839
+ 838,"d","c",6890,,,1,48,2011,"Mar,Jun,Sept,Dec"
840
+ 839,"c","a",240,1,2015,0,,,""
841
+ 840,"a","a",1070,9,2009,0,,,""
842
+ 841,"a","a",27650,8,2004,0,,,""
843
+ 842,"d","c",1200,11,2007,0,,,""
844
+ 843,"c","a",60,4,2006,0,,,""
845
+ 844,"a","a",2030,9,2012,1,18,2011,"Feb,May,Aug,Nov"
846
+ 845,"d","a",7860,11,2005,1,14,2011,"Jan,Apr,Jul,Oct"
847
+ 846,"a","c",8860,4,2004,1,37,2009,"Jan,Apr,Jul,Oct"
848
+ 847,"c","c",190,,,1,31,2013,"Feb,May,Aug,Nov"
849
+ 848,"a","c",370,7,2007,1,14,2011,"Jan,Apr,Jul,Oct"
850
+ 849,"c","c",5000,,,0,,,""
851
+ 850,"d","a",1120,5,2007,1,31,2013,"Jan,Apr,Jul,Oct"
852
+ 851,"d","c",2330,,,1,49,2014,"Mar,Jun,Sept,Dec"
853
+ 852,"c","a",940,4,2004,1,14,2011,"Jan,Apr,Jul,Oct"
854
+ 853,"a","a",14040,,,0,,,""
855
+ 854,"c","a",4770,,,1,13,2010,"Jan,Apr,Jul,Oct"
856
+ 855,"a","a",3440,,,1,45,2009,"Feb,May,Aug,Nov"
857
+ 856,"a","a",3020,2,2010,0,,,""
858
+ 857,"c","a",6270,8,2005,1,23,2014,"Mar,Jun,Sept,Dec"
859
+ 858,"a","a",3370,12,2008,1,40,2014,"Jan,Apr,Jul,Oct"
860
+ 859,"c","a",21770,7,2015,0,,,""
861
+ 860,"c","c",5980,2,2010,0,,,""
862
+ 861,"c","c",740,,,1,14,2013,"Mar,Jun,Sept,Dec"
863
+ 862,"a","c",2840,3,2010,1,14,2011,"Jan,Apr,Jul,Oct"
864
+ 863,"a","c",21370,11,2010,0,,,""
865
+ 864,"a","a",1020,10,2012,1,45,2009,"Feb,May,Aug,Nov"
866
+ 865,"d","c",2640,,,0,,,""
867
+ 866,"d","a",9680,,,1,5,2013,"Feb,May,Aug,Nov"
868
+ 867,"d","c",21810,9,2012,0,,,""
869
+ 868,"d","c",1360,8,2005,1,10,2014,"Jan,Apr,Jul,Oct"
870
+ 869,"c","a",230,10,2001,1,14,2011,"Jan,Apr,Jul,Oct"
871
+ 870,"a","a",780,4,2009,0,,,""
872
+ 871,"d","c",10620,,,0,,,""
873
+ 872,"a","c",3860,9,2014,1,23,2015,"Mar,Jun,Sept,Dec"
874
+ 873,"a","a",2040,11,2008,0,,,""
875
+ 874,"a","a",3210,,,0,,,""
876
+ 875,"d","a",5070,11,2007,1,18,2015,"Feb,May,Aug,Nov"
877
+ 876,"a","a",21790,4,2005,1,18,2015,"Feb,May,Aug,Nov"
878
+ 877,"a","c",29190,,,0,,,""
879
+ 878,"d","c",1100,12,2014,0,,,""
880
+ 879,"d","a",,,,1,5,2013,"Feb,May,Aug,Nov"
881
+ 880,"a","c",4570,,,0,,,""
882
+ 881,"a","a",180,3,2008,1,31,2013,"Feb,May,Aug,Nov"
883
+ 882,"a","a",30,4,2013,0,,,""
884
+ 883,"a","a",3200,6,2005,0,,,""
885
+ 884,"d","c",7550,,,0,,,""
886
+ 885,"a","a",480,12,2005,0,,,""
887
+ 886,"a","c",12430,10,2004,0,,,""
888
+ 887,"d","a",19700,,,1,37,2009,"Jan,Apr,Jul,Oct"
889
+ 888,"d","a",4450,6,2012,1,35,2012,"Mar,Jun,Sept,Dec"
890
+ 889,"d","a",18670,12,2005,0,,,""
891
+ 890,"a","a",4450,,,1,14,2011,"Jan,Apr,Jul,Oct"
892
+ 891,"a","c",350,,,1,31,2013,"Feb,May,Aug,Nov"
893
+ 892,"a","a",19370,4,2002,0,,,""
894
+ 893,"a","a",130,,,1,1,2013,"Jan,Apr,Jul,Oct"
895
+ 894,"a","a",190,11,2012,0,,,""
896
+ 895,"a","c",4150,,,0,,,""
897
+ 896,"a","c",170,9,2012,0,,,""
898
+ 897,"c","c",3290,1,2007,1,5,2013,"Feb,May,Aug,Nov"
899
+ 898,"a","a",18540,,,0,,,""
900
+ 899,"d","a",2590,,,1,13,2010,"Jan,Apr,Jul,Oct"
901
+ 900,"a","a",3920,4,2005,1,40,2014,"Jan,Apr,Jul,Oct"
902
+ 901,"a","c",3170,4,2014,0,,,""
903
+ 902,"a","a",310,5,2015,1,40,2014,"Jan,Apr,Jul,Oct"
904
+ 903,"d","c",7290,9,2014,0,,,""
905
+ 904,"d","c",570,7,2013,1,14,2011,"Jan,Apr,Jul,Oct"
906
+ 905,"a","a",90,6,2014,0,,,""
907
+ 906,"a","a",90,7,2010,0,,,""
908
+ 907,"a","c",250,,,0,,,""
909
+ 908,"a","a",1980,7,2010,1,37,2009,"Jan,Apr,Jul,Oct"
910
+ 909,"a","c",1680,,,1,45,2009,"Feb,May,Aug,Nov"
911
+ 910,"d","c",12480,,,1,1,2013,"Jan,Apr,Jul,Oct"
912
+ 911,"a","c",16490,,,0,,,""
913
+ 912,"c","c",3100,5,2010,0,,,""
914
+ 913,"a","a",280,,,0,,,""
915
+ 914,"c","c",2640,4,2011,1,22,2012,"Mar,Jun,Sept,Dec"
916
+ 915,"d","c",650,3,2013,1,40,2014,"Jan,Apr,Jul,Oct"
917
+ 916,"a","a",90,11,2012,0,,,""
918
+ 917,"a","a",7240,2,2010,0,,,""
919
+ 918,"a","c",18710,4,2015,0,,,""
920
+ 919,"a","a",2620,,,1,45,2009,"Feb,May,Aug,Nov"
921
+ 920,"a","a",850,2,2012,1,40,2014,"Jan,Apr,Jul,Oct"
922
+ 921,"a","a",840,9,2006,0,,,""
923
+ 922,"d","a",2110,3,2006,0,,,""
924
+ 923,"a","a",280,9,2008,0,,,""
925
+ 924,"a","a",6420,4,2011,1,1,2012,"Jan,Apr,Jul,Oct"
926
+ 925,"c","a",470,3,2007,1,1,2012,"Jan,Apr,Jul,Oct"
927
+ 926,"d","c",5150,3,2011,1,13,2010,"Jan,Apr,Jul,Oct"
928
+ 927,"a","a",480,,,0,,,""
929
+ 928,"d","c",1090,,,1,31,2013,"Feb,May,Aug,Nov"
930
+ 929,"a","c",4820,9,2013,0,,,""
931
+ 930,"a","a",70,,,0,,,""
932
+ 931,"a","c",1480,9,2011,1,1,2012,"Jan,Apr,Jul,Oct"
933
+ 932,"a","a",15700,,,1,13,2010,"Jan,Apr,Jul,Oct"
934
+ 933,"a","c",6270,2,2005,0,,,""
935
+ 934,"a","c",5460,,,1,14,2011,"Jan,Apr,Jul,Oct"
936
+ 935,"a","c",22350,6,2010,0,,,""
937
+ 936,"a","a",580,2,2008,0,,,""
938
+ 937,"d","a",2810,,,1,10,2014,"Jan,Apr,Jul,Oct"
939
+ 938,"a","a",2820,9,2009,0,,,""
940
+ 939,"d","a",1340,,,0,,,""
941
+ 940,"d","c",6470,9,2012,0,,,""
942
+ 941,"a","a",1200,12,2011,1,31,2013,"Jan,Apr,Jul,Oct"
943
+ 942,"d","c",6860,,,1,18,2011,"Jan,Apr,Jul,Oct"
944
+ 943,"d","c",18020,,,0,,,""
945
+ 944,"c","a",1670,7,2015,0,,,""
946
+ 945,"a","c",12480,3,2011,0,,,""
947
+ 946,"a","a",2220,12,2011,1,14,2015,"Jan,Apr,Jul,Oct"
948
+ 947,"a","a",460,3,2014,1,13,2010,"Jan,Apr,Jul,Oct"
949
+ 948,"b","b",1430,,,0,,,""
950
+ 949,"a","a",870,3,2006,0,,,""
951
+ 950,"a","a",8460,11,1994,0,,,""
952
+ 951,"d","c",710,,,1,40,2011,"Jan,Apr,Jul,Oct"
953
+ 952,"d","c",6300,10,2013,0,,,""
954
+ 953,"a","a",19830,4,2006,1,22,2011,"Mar,Jun,Sept,Dec"
955
+ 954,"a","a",390,2,2013,1,10,2014,"Jan,Apr,Jul,Oct"
956
+ 955,"d","c",1690,7,2009,1,36,2013,"Mar,Jun,Sept,Dec"
957
+ 956,"a","a",2330,10,2014,1,18,2011,"Feb,May,Aug,Nov"
958
+ 957,"d","c",1420,11,2012,0,,,""
959
+ 958,"a","a",440,11,2013,0,,,""
960
+ 959,"a","c",1060,12,2005,0,,,""
961
+ 960,"d","a",8990,,,1,31,2009,"Feb,May,Aug,Nov"
962
+ 961,"d","c",9430,,,0,,,""
963
+ 962,"c","a",260,,,0,,,""
964
+ 963,"a","c",23620,11,2013,0,,,""
965
+ 964,"a","a",270,,,1,5,2013,"Feb,May,Aug,Nov"
966
+ 965,"a","c",110,,,0,,,""
967
+ 966,"a","a",760,2,2008,0,,,""
968
+ 967,"a","c",3560,9,2013,1,36,2013,"Jan,Apr,Jul,Oct"
969
+ 968,"c","a",1190,,,0,,,""
970
+ 969,"a","c",600,11,1999,1,10,2013,"Jan,Apr,Jul,Oct"
971
+ 970,"a","a",910,12,2014,1,37,2009,"Jan,Apr,Jul,Oct"
972
+ 971,"c","a",1140,5,2011,1,14,2012,"Mar,Jun,Sept,Dec"
973
+ 972,"a","a",14960,,,0,,,""
974
+ 973,"d","c",330,,,1,28,2012,"Jan,Apr,Jul,Oct"
975
+ 974,"a","a",150,3,2011,1,40,2014,"Jan,Apr,Jul,Oct"
976
+ 975,"a","c",9630,,,1,14,2011,"Jan,Apr,Jul,Oct"
977
+ 976,"a","a",4180,,,0,,,""
978
+ 977,"a","a",520,9,2005,1,13,2010,"Jan,Apr,Jul,Oct"
979
+ 978,"c","c",3890,,,0,,,""
980
+ 979,"a","c",2270,11,2005,1,14,2011,"Jan,Apr,Jul,Oct"
981
+ 980,"a","a",4420,9,2005,0,,,""
982
+ 981,"d","c",2620,11,2002,0,,,""
983
+ 982,"d","a",21930,,,0,,,""
984
+ 983,"a","a",40,3,2014,1,1,2014,"Jan,Apr,Jul,Oct"
985
+ 984,"c","a",440,,,1,1,2013,"Jan,Apr,Jul,Oct"
986
+ 985,"c","c",490,5,2007,1,13,2010,"Jan,Apr,Jul,Oct"
987
+ 986,"a","a",620,10,2014,1,18,2014,"Feb,May,Aug,Nov"
988
+ 987,"c","a",1690,6,2007,0,,,""
989
+ 988,"a","a",30,11,2012,0,,,""
990
+ 989,"a","a",1640,6,2006,1,40,2011,"Jan,Apr,Jul,Oct"
991
+ 990,"d","a",20930,,,0,,,""
992
+ 991,"a","a",1010,,,0,,,""
993
+ 992,"a","a",2480,7,1990,0,,,""
994
+ 993,"d","c",3460,10,2013,1,10,2014,"Jan,Apr,Jul,Oct"
995
+ 994,"a","a",2290,7,2011,1,1,2012,"Jan,Apr,Jul,Oct"
996
+ 995,"d","a",6560,12,2013,0,,,""
997
+ 996,"c","a",2870,7,2015,1,13,2010,"Jan,Apr,Jul,Oct"
998
+ 997,"d","c",5840,7,2010,1,37,2009,"Jan,Apr,Jul,Oct"
999
+ 998,"a","a",780,9,2005,1,5,2013,"Feb,May,Aug,Nov"
1000
+ 999,"d","c",15140,2,2002,1,37,2009,"Jan,Apr,Jul,Oct"
1001
+ 1000,"a","c",2230,5,2009,1,40,2014,"Jan,Apr,Jul,Oct"
1002
+ 1001,"c","a",19640,,,1,14,2011,"Jan,Apr,Jul,Oct"
1003
+ 1002,"d","c",1130,11,2008,0,,,""
1004
+ 1003,"a","a",170,7,2013,1,27,2013,"Jan,Apr,Jul,Oct"
1005
+ 1004,"d","c",970,,,1,9,2011,"Mar,Jun,Sept,Dec"
1006
+ 1005,"a","a",6480,,,0,,,""
1007
+ 1006,"c","c",3890,11,2006,1,5,2013,"Feb,May,Aug,Nov"
1008
+ 1007,"c","c",4180,9,2012,0,,,""
1009
+ 1008,"a","c",30,9,2010,0,,,""
1010
+ 1009,"a","a",230,7,2004,1,10,2014,"Jan,Apr,Jul,Oct"
1011
+ 1010,"d","c",4610,6,2010,1,18,2010,"Feb,May,Aug,Nov"
1012
+ 1011,"a","c",490,9,2012,1,18,2011,"Feb,May,Aug,Nov"
1013
+ 1012,"d","c",6330,6,2004,1,39,2010,"Jan,Apr,Jul,Oct"
1014
+ 1013,"a","a",630,2,2015,1,31,2013,"Feb,May,Aug,Nov"
1015
+ 1014,"a","c",210,,,1,31,2013,"Jan,Apr,Jul,Oct"
1016
+ 1015,"d","c",9910,12,2010,1,9,2011,"Mar,Jun,Sept,Dec"
1017
+ 1016,"c","c",550,,,1,35,2010,"Mar,Jun,Sept,Dec"
1018
+ 1017,"c","a",110,11,2008,0,,,""
1019
+ 1018,"c","c",140,9,2012,0,,,""
1020
+ 1019,"d","c",2740,7,2014,1,13,2010,"Jan,Apr,Jul,Oct"
1021
+ 1020,"a","a",40,8,2015,0,,,""
1022
+ 1021,"a","a",1080,5,2011,0,,,""
1023
+ 1022,"a","c",1520,,,0,,,""
1024
+ 1023,"c","a",3740,2,2002,1,14,2011,"Jan,Apr,Jul,Oct"
1025
+ 1024,"c","c",1990,1,2012,0,,,""
1026
+ 1025,"a","a",720,11,2009,0,,,""
1027
+ 1026,"c","a",450,6,2011,1,48,2012,"Mar,Jun,Sept,Dec"
1028
+ 1027,"a","c",190,6,2008,1,40,2011,"Jan,Apr,Jul,Oct"
1029
+ 1028,"a","a",150,,,1,31,2013,"Jan,Apr,Jul,Oct"
1030
+ 1029,"a","a",1590,3,2006,0,,,""
1031
+ 1030,"a","a",36410,4,2008,0,,,""
1032
+ 1031,"d","a",590,5,2001,0,,,""
1033
+ 1032,"d","c",270,2,2013,1,40,2012,"Jan,Apr,Jul,Oct"
1034
+ 1033,"a","a",7680,3,2006,0,,,""
1035
+ 1034,"a","a",13750,4,2015,0,,,""
1036
+ 1035,"a","a",27150,,,0,,,""
1037
+ 1036,"d","c",9560,,,1,36,2013,"Jan,Apr,Jul,Oct"
1038
+ 1037,"a","c",150,,,0,,,""
1039
+ 1038,"d","a",17290,10,2013,0,,,""
1040
+ 1039,"a","c",70,6,1990,1,22,2012,"Mar,Jun,Sept,Dec"
1041
+ 1040,"a","a",4030,2,2013,1,10,2014,"Jan,Apr,Jul,Oct"
1042
+ 1041,"c","a",1600,8,2013,1,40,2014,"Jan,Apr,Jul,Oct"
1043
+ 1042,"a","a",3440,,,1,31,2013,"Feb,May,Aug,Nov"
1044
+ 1043,"c","a",420,3,2006,0,,,""
1045
+ 1044,"c","a",240,4,2015,1,13,2010,"Jan,Apr,Jul,Oct"
1046
+ 1045,"a","c",26990,12,2013,0,,,""
1047
+ 1046,"d","c",29070,4,2005,0,,,""
1048
+ 1047,"a","a",3750,,,1,45,2009,"Feb,May,Aug,Nov"
1049
+ 1048,"d","c",1860,9,2012,1,40,2012,"Jan,Apr,Jul,Oct"
1050
+ 1049,"a","a",370,7,2012,1,14,2011,"Jan,Apr,Jul,Oct"
1051
+ 1050,"d","c",13170,8,2014,1,9,2011,"Mar,Jun,Sept,Dec"
1052
+ 1051,"c","a",200,7,1998,1,1,2012,"Jan,Apr,Jul,Oct"
1053
+ 1052,"a","c",5080,,,1,31,2013,"Feb,May,Aug,Nov"
1054
+ 1053,"a","a",1710,7,2015,0,,,""
1055
+ 1054,"a","c",13190,,,1,45,2013,"Feb,May,Aug,Nov"
1056
+ 1055,"c","a",1980,4,2009,0,,,""
1057
+ 1056,"d","c",5350,,,1,40,2012,"Jan,Apr,Jul,Oct"
1058
+ 1057,"d","c",3230,11,2011,0,,,""
1059
+ 1058,"a","c",180,,,1,35,2010,"Mar,Jun,Sept,Dec"
1060
+ 1059,"c","a",3380,4,2013,0,,,""
1061
+ 1060,"a","c",3430,,,1,31,2013,"Feb,May,Aug,Nov"
1062
+ 1061,"d","c",8110,,,0,,,""
1063
+ 1062,"d","a",190,9,2012,1,40,2012,"Feb,May,Aug,Nov"
1064
+ 1063,"a","c",6250,,,0,,,""
1065
+ 1064,"a","c",420,,,0,,,""
1066
+ 1065,"a","a",1290,,,1,35,2011,"Mar,Jun,Sept,Dec"
1067
+ 1066,"a","a",3350,,,0,,,""
1068
+ 1067,"d","c",12020,7,2009,0,,,""
1069
+ 1068,"d","c",5010,,,1,5,2013,"Jan,Apr,Jul,Oct"
1070
+ 1069,"a","c",18050,,,1,14,2011,"Jan,Apr,Jul,Oct"
1071
+ 1070,"c","c",400,10,2008,0,,,""
1072
+ 1071,"a","a",820,3,2012,1,35,2012,"Mar,Jun,Sept,Dec"
1073
+ 1072,"a","c",5380,8,2015,1,5,2010,"Feb,May,Aug,Nov"
1074
+ 1073,"a","c",1710,,,1,44,2012,"Jan,Apr,Jul,Oct"
1075
+ 1074,"c","c",3330,10,2001,1,14,2011,"Jan,Apr,Jul,Oct"
1076
+ 1075,"a","c",1410,10,2013,0,,,""
1077
+ 1076,"a","c",90,,,1,1,2013,"Jan,Apr,Jul,Oct"
1078
+ 1077,"a","a",3750,11,2001,1,35,2010,"Mar,Jun,Sept,Dec"
1079
+ 1078,"d","c",670,,,1,40,2011,"Jan,Apr,Jul,Oct"
1080
+ 1079,"a","a",16680,,,1,37,2009,"Jan,Apr,Jul,Oct"
1081
+ 1080,"a","a",2410,,,1,40,2014,"Jan,Apr,Jul,Oct"
1082
+ 1081,"b","a",400,3,2006,0,,,""
1083
+ 1082,"c","a",440,4,2002,0,,,""
1084
+ 1083,"d","c",11540,,,1,5,2013,"Feb,May,Aug,Nov"
1085
+ 1084,"a","a",190,,,1,13,2010,"Jan,Apr,Jul,Oct"
1086
+ 1085,"c","a",4030,2,2015,0,,,""
1087
+ 1086,"a","a",180,11,2013,1,18,2011,"Feb,May,Aug,Nov"
1088
+ 1087,"d","c",2210,11,2011,0,,,""
1089
+ 1088,"a","a",4300,3,2009,1,27,2013,"Jan,Apr,Jul,Oct"
1090
+ 1089,"d","a",5220,5,2009,0,,,""
1091
+ 1090,"a","a",330,,,1,14,2011,"Jan,Apr,Jul,Oct"
1092
+ 1091,"a","c",9990,,,0,,,""
1093
+ 1092,"a","a",300,7,2000,1,40,2014,"Jan,Apr,Jul,Oct"
1094
+ 1093,"c","c",10450,6,2009,0,,,""
1095
+ 1094,"d","a",2380,3,2013,1,40,2014,"Jan,Apr,Jul,Oct"
1096
+ 1095,"a","a",690,6,2007,1,14,2011,"Jan,Apr,Jul,Oct"
1097
+ 1096,"a","c",1130,,,1,10,2014,"Mar,Jun,Sept,Dec"
1098
+ 1097,"b","b",720,3,2002,0,,,""
1099
+ 1098,"a","a",1830,11,2004,0,,,""
1100
+ 1099,"a","c",200,4,2013,1,14,2013,"Jan,Apr,Jul,Oct"
1101
+ 1100,"a","a",540,,,1,14,2011,"Jan,Apr,Jul,Oct"
1102
+ 1101,"d","c",4060,9,2012,0,,,""
1103
+ 1102,"a","a",850,11,2012,1,40,2014,"Jan,Apr,Jul,Oct"
1104
+ 1103,"d","c",1340,10,2006,1,5,2013,"Feb,May,Aug,Nov"
1105
+ 1104,"d","a",260,2,2012,1,14,2011,"Jan,Apr,Jul,Oct"
1106
+ 1105,"c","c",330,11,2008,1,5,2013,"Feb,May,Aug,Nov"
1107
+ 1106,"a","c",5330,9,2011,1,31,2013,"Jan,Apr,Jul,Oct"
1108
+ 1107,"a","a",1400,6,2012,1,13,2010,"Jan,Apr,Jul,Oct"
1109
+ 1108,"a","a",540,4,2004,0,,,""
1110
+ 1109,"c","a",3490,4,2011,1,22,2012,"Jan,Apr,Jul,Oct"
1111
+ 1110,"c","c",900,9,2010,0,,,""
1112
+ 1111,"a","a",1900,6,2014,1,31,2013,"Jan,Apr,Jul,Oct"
1113
+ 1112,"c","c",1880,4,2006,0,,,""
1114
+ 1113,"a","c",9260,,,0,,,""
1115
+ 1114,"a","c",870,,,0,,,""
1116
+ 1115,"d","c",5350,,,1,22,2012,"Mar,Jun,Sept,Dec"
Notebooks/01 copy.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:906fe9e08e8405ddb727e310a9b4191ffd607831c2c29e1d978778bbf3ed948e
3
+ size 20758656
Notebooks/01.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:906fe9e08e8405ddb727e310a9b4191ffd607831c2c29e1d978778bbf3ed948e
3
+ size 20758656
Notebooks/SalesPrediction_EDA.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Notebooks/SalesPrediction_ML.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d55ad0de185923b6a16d3c7c06bf59c155a6ac0a33e8aa85f5b52969c5556e57
3
+ size 19598159
Notebooks/pipeline.ipynb ADDED
@@ -0,0 +1,1924 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "<h1> ----- PIPELINE NOTEBOOK ----- </h1>"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 2,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "import numpy as np\n",
17
+ "import pandas as pd\n",
18
+ "from sklearn.pipeline import Pipeline\n",
19
+ "from sklearn.preprocessing import StandardScaler\n",
20
+ "from sklearn.preprocessing import OneHotEncoder\n",
21
+ "from xgboost import XGBRegressor\n",
22
+ "\n",
23
+ "from sklearn.compose import ColumnTransformer\n",
24
+ "\n",
25
+ "from sklearn import set_config"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 3,
31
+ "metadata": {},
32
+ "outputs": [
33
+ {
34
+ "data": {
35
+ "text/html": [
36
+ "<div>\n",
37
+ "<style scoped>\n",
38
+ " .dataframe tbody tr th:only-of-type {\n",
39
+ " vertical-align: middle;\n",
40
+ " }\n",
41
+ "\n",
42
+ " .dataframe tbody tr th {\n",
43
+ " vertical-align: top;\n",
44
+ " }\n",
45
+ "\n",
46
+ " .dataframe thead th {\n",
47
+ " text-align: right;\n",
48
+ " }\n",
49
+ "</style>\n",
50
+ "<table border=\"1\" class=\"dataframe\">\n",
51
+ " <thead>\n",
52
+ " <tr style=\"text-align: right;\">\n",
53
+ " <th></th>\n",
54
+ " <th>Unnamed: 0</th>\n",
55
+ " <th>Store</th>\n",
56
+ " <th>DayOfWeek</th>\n",
57
+ " <th>Date</th>\n",
58
+ " <th>Sales</th>\n",
59
+ " <th>Customers</th>\n",
60
+ " <th>Promo</th>\n",
61
+ " <th>StateHoliday</th>\n",
62
+ " <th>SchoolHoliday</th>\n",
63
+ " <th>StoreType</th>\n",
64
+ " <th>Assortment</th>\n",
65
+ " <th>CompetitionDistance</th>\n",
66
+ " <th>CompetitionOpenSinceMonth</th>\n",
67
+ " <th>CompetitionOpenSinceYear</th>\n",
68
+ " <th>Promo2</th>\n",
69
+ " <th>Promo2SinceWeek</th>\n",
70
+ " <th>Promo2SinceYear</th>\n",
71
+ " <th>PromoInterval</th>\n",
72
+ " </tr>\n",
73
+ " </thead>\n",
74
+ " <tbody>\n",
75
+ " <tr>\n",
76
+ " <th>0</th>\n",
77
+ " <td>0</td>\n",
78
+ " <td>1</td>\n",
79
+ " <td>5</td>\n",
80
+ " <td>2015-07-31</td>\n",
81
+ " <td>5263</td>\n",
82
+ " <td>555</td>\n",
83
+ " <td>1</td>\n",
84
+ " <td>0</td>\n",
85
+ " <td>1</td>\n",
86
+ " <td>Large Store</td>\n",
87
+ " <td>basic</td>\n",
88
+ " <td>1270</td>\n",
89
+ " <td>9</td>\n",
90
+ " <td>2008</td>\n",
91
+ " <td>0</td>\n",
92
+ " <td>0</td>\n",
93
+ " <td>0</td>\n",
94
+ " <td>0</td>\n",
95
+ " </tr>\n",
96
+ " <tr>\n",
97
+ " <th>1</th>\n",
98
+ " <td>1</td>\n",
99
+ " <td>2</td>\n",
100
+ " <td>5</td>\n",
101
+ " <td>2015-07-31</td>\n",
102
+ " <td>6064</td>\n",
103
+ " <td>625</td>\n",
104
+ " <td>1</td>\n",
105
+ " <td>0</td>\n",
106
+ " <td>1</td>\n",
107
+ " <td>Small Shop</td>\n",
108
+ " <td>basic</td>\n",
109
+ " <td>570</td>\n",
110
+ " <td>11</td>\n",
111
+ " <td>2007</td>\n",
112
+ " <td>1</td>\n",
113
+ " <td>13</td>\n",
114
+ " <td>2010</td>\n",
115
+ " <td>Jan,Apr,Jul,Oct</td>\n",
116
+ " </tr>\n",
117
+ " <tr>\n",
118
+ " <th>2</th>\n",
119
+ " <td>2</td>\n",
120
+ " <td>3</td>\n",
121
+ " <td>5</td>\n",
122
+ " <td>2015-07-31</td>\n",
123
+ " <td>8314</td>\n",
124
+ " <td>821</td>\n",
125
+ " <td>1</td>\n",
126
+ " <td>0</td>\n",
127
+ " <td>1</td>\n",
128
+ " <td>Small Shop</td>\n",
129
+ " <td>basic</td>\n",
130
+ " <td>14130</td>\n",
131
+ " <td>12</td>\n",
132
+ " <td>2006</td>\n",
133
+ " <td>1</td>\n",
134
+ " <td>14</td>\n",
135
+ " <td>2011</td>\n",
136
+ " <td>Jan,Apr,Jul,Oct</td>\n",
137
+ " </tr>\n",
138
+ " <tr>\n",
139
+ " <th>3</th>\n",
140
+ " <td>3</td>\n",
141
+ " <td>4</td>\n",
142
+ " <td>5</td>\n",
143
+ " <td>2015-07-31</td>\n",
144
+ " <td>13995</td>\n",
145
+ " <td>1498</td>\n",
146
+ " <td>1</td>\n",
147
+ " <td>0</td>\n",
148
+ " <td>1</td>\n",
149
+ " <td>Large Store</td>\n",
150
+ " <td>extended</td>\n",
151
+ " <td>620</td>\n",
152
+ " <td>9</td>\n",
153
+ " <td>2009</td>\n",
154
+ " <td>0</td>\n",
155
+ " <td>0</td>\n",
156
+ " <td>0</td>\n",
157
+ " <td>0</td>\n",
158
+ " </tr>\n",
159
+ " <tr>\n",
160
+ " <th>4</th>\n",
161
+ " <td>4</td>\n",
162
+ " <td>5</td>\n",
163
+ " <td>5</td>\n",
164
+ " <td>2015-07-31</td>\n",
165
+ " <td>4822</td>\n",
166
+ " <td>559</td>\n",
167
+ " <td>1</td>\n",
168
+ " <td>0</td>\n",
169
+ " <td>1</td>\n",
170
+ " <td>Small Shop</td>\n",
171
+ " <td>basic</td>\n",
172
+ " <td>29910</td>\n",
173
+ " <td>4</td>\n",
174
+ " <td>2015</td>\n",
175
+ " <td>0</td>\n",
176
+ " <td>0</td>\n",
177
+ " <td>0</td>\n",
178
+ " <td>0</td>\n",
179
+ " </tr>\n",
180
+ " </tbody>\n",
181
+ "</table>\n",
182
+ "</div>"
183
+ ],
184
+ "text/plain": [
185
+ " Unnamed: 0 Store DayOfWeek Date Sales Customers Promo \\\n",
186
+ "0 0 1 5 2015-07-31 5263 555 1 \n",
187
+ "1 1 2 5 2015-07-31 6064 625 1 \n",
188
+ "2 2 3 5 2015-07-31 8314 821 1 \n",
189
+ "3 3 4 5 2015-07-31 13995 1498 1 \n",
190
+ "4 4 5 5 2015-07-31 4822 559 1 \n",
191
+ "\n",
192
+ " StateHoliday SchoolHoliday StoreType Assortment CompetitionDistance \\\n",
193
+ "0 0 1 Large Store basic 1270 \n",
194
+ "1 0 1 Small Shop basic 570 \n",
195
+ "2 0 1 Small Shop basic 14130 \n",
196
+ "3 0 1 Large Store extended 620 \n",
197
+ "4 0 1 Small Shop basic 29910 \n",
198
+ "\n",
199
+ " CompetitionOpenSinceMonth CompetitionOpenSinceYear Promo2 \\\n",
200
+ "0 9 2008 0 \n",
201
+ "1 11 2007 1 \n",
202
+ "2 12 2006 1 \n",
203
+ "3 9 2009 0 \n",
204
+ "4 4 2015 0 \n",
205
+ "\n",
206
+ " Promo2SinceWeek Promo2SinceYear PromoInterval \n",
207
+ "0 0 0 0 \n",
208
+ "1 13 2010 Jan,Apr,Jul,Oct \n",
209
+ "2 14 2011 Jan,Apr,Jul,Oct \n",
210
+ "3 0 0 0 \n",
211
+ "4 0 0 0 "
212
+ ]
213
+ },
214
+ "execution_count": 3,
215
+ "metadata": {},
216
+ "output_type": "execute_result"
217
+ }
218
+ ],
219
+ "source": [
220
+ "df = pd.read_csv(r\"../Dataset/Rossmann_Cleaned_data.csv\")\n",
221
+ "df.head()"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": 4,
227
+ "metadata": {},
228
+ "outputs": [
229
+ {
230
+ "data": {
231
+ "text/html": [
232
+ "<div>\n",
233
+ "<style scoped>\n",
234
+ " .dataframe tbody tr th:only-of-type {\n",
235
+ " vertical-align: middle;\n",
236
+ " }\n",
237
+ "\n",
238
+ " .dataframe tbody tr th {\n",
239
+ " vertical-align: top;\n",
240
+ " }\n",
241
+ "\n",
242
+ " .dataframe thead th {\n",
243
+ " text-align: right;\n",
244
+ " }\n",
245
+ "</style>\n",
246
+ "<table border=\"1\" class=\"dataframe\">\n",
247
+ " <thead>\n",
248
+ " <tr style=\"text-align: right;\">\n",
249
+ " <th></th>\n",
250
+ " <th>PromoInterval</th>\n",
251
+ " <th>StoreType</th>\n",
252
+ " <th>Assortment</th>\n",
253
+ " <th>StateHoliday</th>\n",
254
+ " <th>Store</th>\n",
255
+ " <th>Customers</th>\n",
256
+ " <th>Promo</th>\n",
257
+ " <th>SchoolHoliday</th>\n",
258
+ " <th>CompetitionDistance</th>\n",
259
+ " <th>CompetitionOpenSinceMonth</th>\n",
260
+ " <th>CompetitionOpenSinceYear</th>\n",
261
+ " <th>Sales</th>\n",
262
+ " </tr>\n",
263
+ " </thead>\n",
264
+ " <tbody>\n",
265
+ " <tr>\n",
266
+ " <th>0</th>\n",
267
+ " <td>0</td>\n",
268
+ " <td>Large Store</td>\n",
269
+ " <td>basic</td>\n",
270
+ " <td>0</td>\n",
271
+ " <td>1</td>\n",
272
+ " <td>555</td>\n",
273
+ " <td>1</td>\n",
274
+ " <td>1</td>\n",
275
+ " <td>1270</td>\n",
276
+ " <td>9</td>\n",
277
+ " <td>2008</td>\n",
278
+ " <td>5263</td>\n",
279
+ " </tr>\n",
280
+ " <tr>\n",
281
+ " <th>1</th>\n",
282
+ " <td>Jan,Apr,Jul,Oct</td>\n",
283
+ " <td>Small Shop</td>\n",
284
+ " <td>basic</td>\n",
285
+ " <td>0</td>\n",
286
+ " <td>2</td>\n",
287
+ " <td>625</td>\n",
288
+ " <td>1</td>\n",
289
+ " <td>1</td>\n",
290
+ " <td>570</td>\n",
291
+ " <td>11</td>\n",
292
+ " <td>2007</td>\n",
293
+ " <td>6064</td>\n",
294
+ " </tr>\n",
295
+ " <tr>\n",
296
+ " <th>2</th>\n",
297
+ " <td>Jan,Apr,Jul,Oct</td>\n",
298
+ " <td>Small Shop</td>\n",
299
+ " <td>basic</td>\n",
300
+ " <td>0</td>\n",
301
+ " <td>3</td>\n",
302
+ " <td>821</td>\n",
303
+ " <td>1</td>\n",
304
+ " <td>1</td>\n",
305
+ " <td>14130</td>\n",
306
+ " <td>12</td>\n",
307
+ " <td>2006</td>\n",
308
+ " <td>8314</td>\n",
309
+ " </tr>\n",
310
+ " <tr>\n",
311
+ " <th>3</th>\n",
312
+ " <td>0</td>\n",
313
+ " <td>Large Store</td>\n",
314
+ " <td>extended</td>\n",
315
+ " <td>0</td>\n",
316
+ " <td>4</td>\n",
317
+ " <td>1498</td>\n",
318
+ " <td>1</td>\n",
319
+ " <td>1</td>\n",
320
+ " <td>620</td>\n",
321
+ " <td>9</td>\n",
322
+ " <td>2009</td>\n",
323
+ " <td>13995</td>\n",
324
+ " </tr>\n",
325
+ " <tr>\n",
326
+ " <th>4</th>\n",
327
+ " <td>0</td>\n",
328
+ " <td>Small Shop</td>\n",
329
+ " <td>basic</td>\n",
330
+ " <td>0</td>\n",
331
+ " <td>5</td>\n",
332
+ " <td>559</td>\n",
333
+ " <td>1</td>\n",
334
+ " <td>1</td>\n",
335
+ " <td>29910</td>\n",
336
+ " <td>4</td>\n",
337
+ " <td>2015</td>\n",
338
+ " <td>4822</td>\n",
339
+ " </tr>\n",
340
+ " </tbody>\n",
341
+ "</table>\n",
342
+ "</div>"
343
+ ],
344
+ "text/plain": [
345
+ " PromoInterval StoreType Assortment StateHoliday Store Customers \\\n",
346
+ "0 0 Large Store basic 0 1 555 \n",
347
+ "1 Jan,Apr,Jul,Oct Small Shop basic 0 2 625 \n",
348
+ "2 Jan,Apr,Jul,Oct Small Shop basic 0 3 821 \n",
349
+ "3 0 Large Store extended 0 4 1498 \n",
350
+ "4 0 Small Shop basic 0 5 559 \n",
351
+ "\n",
352
+ " Promo SchoolHoliday CompetitionDistance CompetitionOpenSinceMonth \\\n",
353
+ "0 1 1 1270 9 \n",
354
+ "1 1 1 570 11 \n",
355
+ "2 1 1 14130 12 \n",
356
+ "3 1 1 620 9 \n",
357
+ "4 1 1 29910 4 \n",
358
+ "\n",
359
+ " CompetitionOpenSinceYear Sales \n",
360
+ "0 2008 5263 \n",
361
+ "1 2007 6064 \n",
362
+ "2 2006 8314 \n",
363
+ "3 2009 13995 \n",
364
+ "4 2015 4822 "
365
+ ]
366
+ },
367
+ "execution_count": 4,
368
+ "metadata": {},
369
+ "output_type": "execute_result"
370
+ }
371
+ ],
372
+ "source": [
373
+ "df = df[[\"PromoInterval\",\"StoreType\",\"Assortment\",\"StateHoliday\",\"Store\",\"Customers\",\"Promo\",\"SchoolHoliday\",\"CompetitionDistance\",\"CompetitionOpenSinceMonth\",\"CompetitionOpenSinceYear\",\"Sales\"]]\n",
374
+ "df.head()"
375
+ ]
376
+ },
377
+ {
378
+ "cell_type": "code",
379
+ "execution_count": 10,
380
+ "metadata": {},
381
+ "outputs": [
382
+ {
383
+ "name": "stdout",
384
+ "output_type": "stream",
385
+ "text": [
386
+ "8\n",
387
+ "7388\n"
388
+ ]
389
+ }
390
+ ],
391
+ "source": [
392
+ "print(df[\"Customers\"].min())\n",
393
+ "print(df[\"Customers\"].max())"
394
+ ]
395
+ },
396
+ {
397
+ "cell_type": "code",
398
+ "execution_count": 11,
399
+ "metadata": {},
400
+ "outputs": [
401
+ {
402
+ "name": "stdout",
403
+ "output_type": "stream",
404
+ "text": [
405
+ "<class 'pandas.core.frame.DataFrame'>\n",
406
+ "RangeIndex: 844338 entries, 0 to 844337\n",
407
+ "Data columns (total 12 columns):\n",
408
+ " # Column Non-Null Count Dtype \n",
409
+ "--- ------ -------------- ----- \n",
410
+ " 0 PromoInterval 844338 non-null object\n",
411
+ " 1 StoreType 844338 non-null object\n",
412
+ " 2 Assortment 844338 non-null object\n",
413
+ " 3 StateHoliday 844338 non-null int64 \n",
414
+ " 4 Store 844338 non-null int64 \n",
415
+ " 5 Customers 844338 non-null int64 \n",
416
+ " 6 Promo 844338 non-null int64 \n",
417
+ " 7 SchoolHoliday 844338 non-null int64 \n",
418
+ " 8 CompetitionDistance 844338 non-null int64 \n",
419
+ " 9 CompetitionOpenSinceMonth 844338 non-null int64 \n",
420
+ " 10 CompetitionOpenSinceYear 844338 non-null int64 \n",
421
+ " 11 Sales 844338 non-null int64 \n",
422
+ "dtypes: int64(9), object(3)\n",
423
+ "memory usage: 77.3+ MB\n"
424
+ ]
425
+ }
426
+ ],
427
+ "source": [
428
+ "df.info()"
429
+ ]
430
+ },
431
+ {
432
+ "cell_type": "code",
433
+ "execution_count": 14,
434
+ "metadata": {},
435
+ "outputs": [
436
+ {
437
+ "data": {
438
+ "text/plain": [
439
+ "(844338, 12)"
440
+ ]
441
+ },
442
+ "execution_count": 14,
443
+ "metadata": {},
444
+ "output_type": "execute_result"
445
+ }
446
+ ],
447
+ "source": [
448
+ "df.shape"
449
+ ]
450
+ },
451
+ {
452
+ "cell_type": "code",
453
+ "execution_count": 15,
454
+ "metadata": {},
455
+ "outputs": [
456
+ {
457
+ "name": "stdout",
458
+ "output_type": "stream",
459
+ "text": [
460
+ "Unique values in PromoInterval: ['0' 'Jan,Apr,Jul,Oct' 'Feb,May,Aug,Nov' 'Mar,Jun,Sept,Dec']\n",
461
+ "Unique values in StoreType: ['Large Store' 'Small Shop' 'Hypermarket' 'Medium Store']\n",
462
+ "Unique values in Assortment: ['basic' 'extended' 'extra']\n",
463
+ "Unique values in StateHoliday: [0 1]\n",
464
+ "Unique values in Store: [ 1 2 3 ... 1115 876 292]\n",
465
+ "Unique values in Customers: [ 555 625 821 ... 3900 36 4065]\n",
466
+ "Unique values in Promo: [1 0]\n",
467
+ "Unique values in SchoolHoliday: [1 0]\n",
468
+ "Unique values in CompetitionDistance: [ 1270 570 14130 620 29910 310 24000 7520 2030 3160 960 1070\n",
469
+ " 1300 4110 3270 50 13840 3240 2340 550 1040 4060 4590 430\n",
470
+ " 2300 60 1200 2170 40 9800 2910 1320 2240 7660 540 4230\n",
471
+ " 1090 260 180 1180 290 4880 9710 270 1060 18010 6260 10570\n",
472
+ " 450 30360 7170 720 6620 420 7340 2840 5540 350 2050 3700\n",
473
+ " 22560 410 250 1130 4840 17500 2200 1650 330 22440 19960 3510\n",
474
+ " 3320 7910 2370 22390 2710 11810 1870 480 560 10690 2380 2410\n",
475
+ " 240 16690 14620 1890 8780 8980 15140 17930 2440 150 5210 390\n",
476
+ " 6190 1390 1930 2190 3300 46590 7890 1630 20930 4510 5740 680\n",
477
+ " 3450 3580 2100 2290 3570 58260 16760 1410 760 3370 1350 2000\n",
478
+ " 2460 900 920 5190 1730 25360 1700 1540 2930 16570 280 8050\n",
479
+ " 8540 2090 2610 31830 4360 1780 16240 16420 3050 2020 2950 11840\n",
480
+ " 8530 17110 2970 5340 1480 1160 3720 100 140 12540 980 2640\n",
481
+ " 110 13090 4130 3770 1250 1710 5800 12610 9670 3560 1860 19360\n",
482
+ " 850 5760 1470 1100 2770 520 16970 220 3850 4210 6360 20260\n",
483
+ " 5140 490 5630 380 6870 300 11680 970 15050 4030 8650 190\n",
484
+ " 3150 640 1640 1000 13530 2920 7930 10180 10800 17410 6680 3840\n",
485
+ " 13570 4370 5710 1420 320 610 1110 780 6880 710 1310 4660\n",
486
+ " 70 340 3520 22330 4630 80 27190 210 15340 1140 4580 360\n",
487
+ " 4520 1450 16180 8480 3640 2960 7840 9260 2320 18640 6970 1220\n",
488
+ " 2260 1290 1460 2740 800 6540 4150 2325 9580 19840 38630 120\n",
489
+ " 15430 1950 2470 5100 18660 8740 11300 14160 38710 9000 3140 32330\n",
490
+ " 8140 8400 13140 10070 3130 370 670 1840 4040 90 10600 1590\n",
491
+ " 2280 8080 15770 18650 8090 9360 16490 1490 8880 5290 1500 9720\n",
492
+ " 8970 2060 2890 2040 4490 13620 6470 5870 8250 1970 11120 1150\n",
493
+ " 15710 160 2140 6630 1800 26130 130 6690 1600 460 2120 4820\n",
494
+ " 10850 3620 23130 5360 9200 5830 4970 1080 8240 5890 1560 840\n",
495
+ " 8460 4460 6210 6910 4650 1620 3530 2880 16350 12870 810 30030\n",
496
+ " 13020 910 3900 2530 500 11400 1510 3970 5780 1850 75860 26450\n",
497
+ " 3390 34050 1790 44320 4160 10890 3110 20390 5260 5300 5030 14810\n",
498
+ " 8300 770 1940 7470 2550 2310 14300 2180 14960 660 4680 1740\n",
499
+ " 1260 5470 2780 1610 990 13080 820 9070 1280 4740 8260 590\n",
500
+ " 400 11260 20 22490 3330 2510 6900 18610 7160 40860 20620 12920\n",
501
+ " 18160 5950 4700 600 650 7280 5020 580 8990 3760 2330 4260\n",
502
+ " 3040 3000 3910 1910 1210 700 1010 4270 1340 2110 9230 1190\n",
503
+ " 4400 2270 12700 20970 170 7250 1360 440 15720 3340 2540 33060\n",
504
+ " 17340 8220 10950 10310 18370 2070 2490 730 8940 9910 5440 30\n",
505
+ " 4080 6920 1170 10740 510 1690 2870 3350 11640 27530 9790 10170\n",
506
+ " 7780 8040 530 230 7420 2130 14570 200 6930 7860 1680 2700\n",
507
+ " 17080 15170 3250 4140 2850 20050 18760 15040 3030 3780 830 8550\n",
508
+ " 7830 2900 11470 4870 12070 3200 8190 15320 3590 5650 5900 17540\n",
509
+ " 40540 13990 15270 35280 860 1920 5980 6400 11900 4380 6710 1370\n",
510
+ " 17650 4330 45740 3410 8670 13130 19780 2390 32240 26490 25430 9820\n",
511
+ " 2630 20640 16990 630 5390 15490 3210 1530 9770 17280 5090 7180\n",
512
+ " 9560 48330 1760 24770 3870 18620 12770 9640 2590 24530 16210 17570\n",
513
+ " 7980 3290 6320 5070 3470 2720 14600 6890 27650 8860 5000 1120\n",
514
+ " 940 14040 4770 3440 3020 6270 21770 740 21370 1020 9680 21810\n",
515
+ " 10620 3860 29190 4570 7550 12430 19700 4450 18670 19370 18540 3920\n",
516
+ " 3170 7290 1980 12480 3100 7240 18710 2620 6420 470 5150 15700\n",
517
+ " 5460 22350 2810 2820 6860 18020 1670 2220 1430 870 6300 19830\n",
518
+ " 9430 23620 9630 4180 3890 4420 21930 2480 3460 6560 5840 2230\n",
519
+ " 19640 6480 4610 6330 1520 3740 1990 36410 7680 13750 27150 17290\n",
520
+ " 26990 29070 3750 13170 5080 13190 5350 3230 3380 3430 8110 6250\n",
521
+ " 12020 5010 18050 5380 16680 11540 2210 4300 5220 9990 10450 690\n",
522
+ " 1830 5330 1400 3490 1900 1880 21790]\n",
523
+ "Unique values in CompetitionOpenSinceMonth: [ 9 11 12 4 10 8 3 6 5 1 2 7]\n",
524
+ "Unique values in CompetitionOpenSinceYear: [2008 2007 2006 2009 2015 2013 2014 2000 2011 2010 2005 1999 2003 2012\n",
525
+ " 2004 2002 1961 1995 2001 1990 1994 1900 1998]\n",
526
+ "Unique values in Sales: [ 5263 6064 8314 ... 660 17815 23303]\n"
527
+ ]
528
+ }
529
+ ],
530
+ "source": [
531
+ "def print_unique_values(dataframe):\n",
532
+ " for column in dataframe.columns:\n",
533
+ " unique_values = dataframe[column].unique()\n",
534
+ " print(f\"Unique values in {column}: {unique_values}\")\n",
535
+ "\n",
536
+ "# Example usage:\n",
537
+ "print_unique_values(df)\n"
538
+ ]
539
+ },
540
+ {
541
+ "cell_type": "code",
542
+ "execution_count": 16,
543
+ "metadata": {},
544
+ "outputs": [],
545
+ "source": [
546
+ "X = df.drop(columns = [\"Sales\"])\n",
547
+ "y = df[\"Sales\"]"
548
+ ]
549
+ },
550
+ {
551
+ "cell_type": "markdown",
552
+ "metadata": {},
553
+ "source": [
554
+ "## Train Test Split"
555
+ ]
556
+ },
557
+ {
558
+ "cell_type": "code",
559
+ "execution_count": 17,
560
+ "metadata": {},
561
+ "outputs": [
562
+ {
563
+ "data": {
564
+ "text/plain": [
565
+ "((633253, 11), (211085, 11), (633253,), (211085,))"
566
+ ]
567
+ },
568
+ "execution_count": 17,
569
+ "metadata": {},
570
+ "output_type": "execute_result"
571
+ }
572
+ ],
573
+ "source": [
574
+ "from sklearn.model_selection import train_test_split\n",
575
+ "X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, random_state=42)\n",
576
+ "\n",
577
+ "# Checking the shape after spliting\n",
578
+ "X_train.shape, X_test.shape, y_train.shape, y_test.shape"
579
+ ]
580
+ },
581
+ {
582
+ "cell_type": "code",
583
+ "execution_count": 18,
584
+ "metadata": {},
585
+ "outputs": [
586
+ {
587
+ "data": {
588
+ "text/html": [
589
+ "<div>\n",
590
+ "<style scoped>\n",
591
+ " .dataframe tbody tr th:only-of-type {\n",
592
+ " vertical-align: middle;\n",
593
+ " }\n",
594
+ "\n",
595
+ " .dataframe tbody tr th {\n",
596
+ " vertical-align: top;\n",
597
+ " }\n",
598
+ "\n",
599
+ " .dataframe thead th {\n",
600
+ " text-align: right;\n",
601
+ " }\n",
602
+ "</style>\n",
603
+ "<table border=\"1\" class=\"dataframe\">\n",
604
+ " <thead>\n",
605
+ " <tr style=\"text-align: right;\">\n",
606
+ " <th></th>\n",
607
+ " <th>PromoInterval</th>\n",
608
+ " <th>StoreType</th>\n",
609
+ " <th>Assortment</th>\n",
610
+ " <th>StateHoliday</th>\n",
611
+ " <th>Store</th>\n",
612
+ " <th>Customers</th>\n",
613
+ " <th>Promo</th>\n",
614
+ " <th>SchoolHoliday</th>\n",
615
+ " <th>CompetitionDistance</th>\n",
616
+ " <th>CompetitionOpenSinceMonth</th>\n",
617
+ " <th>CompetitionOpenSinceYear</th>\n",
618
+ " </tr>\n",
619
+ " </thead>\n",
620
+ " <tbody>\n",
621
+ " <tr>\n",
622
+ " <th>795018</th>\n",
623
+ " <td>Jan,Apr,Jul,Oct</td>\n",
624
+ " <td>Small Shop</td>\n",
625
+ " <td>basic</td>\n",
626
+ " <td>0</td>\n",
627
+ " <td>650</td>\n",
628
+ " <td>636</td>\n",
629
+ " <td>1</td>\n",
630
+ " <td>0</td>\n",
631
+ " <td>1420</td>\n",
632
+ " <td>10</td>\n",
633
+ " <td>2012</td>\n",
634
+ " </tr>\n",
635
+ " <tr>\n",
636
+ " <th>463276</th>\n",
637
+ " <td>Jan,Apr,Jul,Oct</td>\n",
638
+ " <td>Small Shop</td>\n",
639
+ " <td>basic</td>\n",
640
+ " <td>0</td>\n",
641
+ " <td>72</td>\n",
642
+ " <td>261</td>\n",
643
+ " <td>0</td>\n",
644
+ " <td>0</td>\n",
645
+ " <td>2200</td>\n",
646
+ " <td>12</td>\n",
647
+ " <td>2009</td>\n",
648
+ " </tr>\n",
649
+ " <tr>\n",
650
+ " <th>268352</th>\n",
651
+ " <td>0</td>\n",
652
+ " <td>Medium Store</td>\n",
653
+ " <td>extra</td>\n",
654
+ " <td>0</td>\n",
655
+ " <td>733</td>\n",
656
+ " <td>3567</td>\n",
657
+ " <td>1</td>\n",
658
+ " <td>0</td>\n",
659
+ " <td>860</td>\n",
660
+ " <td>10</td>\n",
661
+ " <td>1999</td>\n",
662
+ " </tr>\n",
663
+ " <tr>\n",
664
+ " <th>67308</th>\n",
665
+ " <td>0</td>\n",
666
+ " <td>Small Shop</td>\n",
667
+ " <td>extended</td>\n",
668
+ " <td>0</td>\n",
669
+ " <td>796</td>\n",
670
+ " <td>791</td>\n",
671
+ " <td>1</td>\n",
672
+ " <td>0</td>\n",
673
+ " <td>7180</td>\n",
674
+ " <td>11</td>\n",
675
+ " <td>2012</td>\n",
676
+ " </tr>\n",
677
+ " <tr>\n",
678
+ " <th>482458</th>\n",
679
+ " <td>0</td>\n",
680
+ " <td>Small Shop</td>\n",
681
+ " <td>extended</td>\n",
682
+ " <td>0</td>\n",
683
+ " <td>301</td>\n",
684
+ " <td>480</td>\n",
685
+ " <td>0</td>\n",
686
+ " <td>0</td>\n",
687
+ " <td>4510</td>\n",
688
+ " <td>3</td>\n",
689
+ " <td>2015</td>\n",
690
+ " </tr>\n",
691
+ " <tr>\n",
692
+ " <th>...</th>\n",
693
+ " <td>...</td>\n",
694
+ " <td>...</td>\n",
695
+ " <td>...</td>\n",
696
+ " <td>...</td>\n",
697
+ " <td>...</td>\n",
698
+ " <td>...</td>\n",
699
+ " <td>...</td>\n",
700
+ " <td>...</td>\n",
701
+ " <td>...</td>\n",
702
+ " <td>...</td>\n",
703
+ " <td>...</td>\n",
704
+ " </tr>\n",
705
+ " <tr>\n",
706
+ " <th>259178</th>\n",
707
+ " <td>Feb,May,Aug,Nov</td>\n",
708
+ " <td>Small Shop</td>\n",
709
+ " <td>basic</td>\n",
710
+ " <td>0</td>\n",
711
+ " <td>1013</td>\n",
712
+ " <td>217</td>\n",
713
+ " <td>0</td>\n",
714
+ " <td>0</td>\n",
715
+ " <td>630</td>\n",
716
+ " <td>2</td>\n",
717
+ " <td>2015</td>\n",
718
+ " </tr>\n",
719
+ " <tr>\n",
720
+ " <th>365838</th>\n",
721
+ " <td>Jan,Apr,Jul,Oct</td>\n",
722
+ " <td>Small Shop</td>\n",
723
+ " <td>extended</td>\n",
724
+ " <td>0</td>\n",
725
+ " <td>11</td>\n",
726
+ " <td>1394</td>\n",
727
+ " <td>1</td>\n",
728
+ " <td>0</td>\n",
729
+ " <td>960</td>\n",
730
+ " <td>11</td>\n",
731
+ " <td>2011</td>\n",
732
+ " </tr>\n",
733
+ " <tr>\n",
734
+ " <th>131932</th>\n",
735
+ " <td>0</td>\n",
736
+ " <td>Small Shop</td>\n",
737
+ " <td>basic</td>\n",
738
+ " <td>0</td>\n",
739
+ " <td>376</td>\n",
740
+ " <td>796</td>\n",
741
+ " <td>0</td>\n",
742
+ " <td>0</td>\n",
743
+ " <td>160</td>\n",
744
+ " <td>8</td>\n",
745
+ " <td>2012</td>\n",
746
+ " </tr>\n",
747
+ " <tr>\n",
748
+ " <th>671155</th>\n",
749
+ " <td>0</td>\n",
750
+ " <td>Hypermarket</td>\n",
751
+ " <td>extended</td>\n",
752
+ " <td>0</td>\n",
753
+ " <td>76</td>\n",
754
+ " <td>885</td>\n",
755
+ " <td>0</td>\n",
756
+ " <td>0</td>\n",
757
+ " <td>19960</td>\n",
758
+ " <td>3</td>\n",
759
+ " <td>2006</td>\n",
760
+ " </tr>\n",
761
+ " <tr>\n",
762
+ " <th>121958</th>\n",
763
+ " <td>Feb,May,Aug,Nov</td>\n",
764
+ " <td>Small Shop</td>\n",
765
+ " <td>basic</td>\n",
766
+ " <td>0</td>\n",
767
+ " <td>446</td>\n",
768
+ " <td>684</td>\n",
769
+ " <td>1</td>\n",
770
+ " <td>0</td>\n",
771
+ " <td>340</td>\n",
772
+ " <td>10</td>\n",
773
+ " <td>2000</td>\n",
774
+ " </tr>\n",
775
+ " </tbody>\n",
776
+ "</table>\n",
777
+ "<p>633253 rows × 11 columns</p>\n",
778
+ "</div>"
779
+ ],
780
+ "text/plain": [
781
+ " PromoInterval StoreType Assortment StateHoliday Store \\\n",
782
+ "795018 Jan,Apr,Jul,Oct Small Shop basic 0 650 \n",
783
+ "463276 Jan,Apr,Jul,Oct Small Shop basic 0 72 \n",
784
+ "268352 0 Medium Store extra 0 733 \n",
785
+ "67308 0 Small Shop extended 0 796 \n",
786
+ "482458 0 Small Shop extended 0 301 \n",
787
+ "... ... ... ... ... ... \n",
788
+ "259178 Feb,May,Aug,Nov Small Shop basic 0 1013 \n",
789
+ "365838 Jan,Apr,Jul,Oct Small Shop extended 0 11 \n",
790
+ "131932 0 Small Shop basic 0 376 \n",
791
+ "671155 0 Hypermarket extended 0 76 \n",
792
+ "121958 Feb,May,Aug,Nov Small Shop basic 0 446 \n",
793
+ "\n",
794
+ " Customers Promo SchoolHoliday CompetitionDistance \\\n",
795
+ "795018 636 1 0 1420 \n",
796
+ "463276 261 0 0 2200 \n",
797
+ "268352 3567 1 0 860 \n",
798
+ "67308 791 1 0 7180 \n",
799
+ "482458 480 0 0 4510 \n",
800
+ "... ... ... ... ... \n",
801
+ "259178 217 0 0 630 \n",
802
+ "365838 1394 1 0 960 \n",
803
+ "131932 796 0 0 160 \n",
804
+ "671155 885 0 0 19960 \n",
805
+ "121958 684 1 0 340 \n",
806
+ "\n",
807
+ " CompetitionOpenSinceMonth CompetitionOpenSinceYear \n",
808
+ "795018 10 2012 \n",
809
+ "463276 12 2009 \n",
810
+ "268352 10 1999 \n",
811
+ "67308 11 2012 \n",
812
+ "482458 3 2015 \n",
813
+ "... ... ... \n",
814
+ "259178 2 2015 \n",
815
+ "365838 11 2011 \n",
816
+ "131932 8 2012 \n",
817
+ "671155 3 2006 \n",
818
+ "121958 10 2000 \n",
819
+ "\n",
820
+ "[633253 rows x 11 columns]"
821
+ ]
822
+ },
823
+ "execution_count": 18,
824
+ "metadata": {},
825
+ "output_type": "execute_result"
826
+ }
827
+ ],
828
+ "source": [
829
+ "X_train"
830
+ ]
831
+ },
832
+ {
833
+ "cell_type": "code",
834
+ "execution_count": 19,
835
+ "metadata": {},
836
+ "outputs": [
837
+ {
838
+ "data": {
839
+ "text/plain": [
840
+ "PromoInterval\n",
841
+ "0 423292\n",
842
+ "Jan,Apr,Jul,Oct 242397\n",
843
+ "Feb,May,Aug,Nov 97998\n",
844
+ "Mar,Jun,Sept,Dec 80651\n",
845
+ "Name: count, dtype: int64"
846
+ ]
847
+ },
848
+ "execution_count": 19,
849
+ "metadata": {},
850
+ "output_type": "execute_result"
851
+ }
852
+ ],
853
+ "source": [
854
+ "df[\"PromoInterval\"].value_counts()"
855
+ ]
856
+ },
857
+ {
858
+ "cell_type": "markdown",
859
+ "metadata": {},
860
+ "source": [
861
+ "# Pipeline"
862
+ ]
863
+ },
864
+ {
865
+ "cell_type": "code",
866
+ "execution_count": 20,
867
+ "metadata": {},
868
+ "outputs": [
869
+ {
870
+ "data": {
871
+ "text/html": [
872
+ "<style>#sk-container-id-1 {\n",
873
+ " /* Definition of color scheme common for light and dark mode */\n",
874
+ " --sklearn-color-text: black;\n",
875
+ " --sklearn-color-line: gray;\n",
876
+ " /* Definition of color scheme for unfitted estimators */\n",
877
+ " --sklearn-color-unfitted-level-0: #fff5e6;\n",
878
+ " --sklearn-color-unfitted-level-1: #f6e4d2;\n",
879
+ " --sklearn-color-unfitted-level-2: #ffe0b3;\n",
880
+ " --sklearn-color-unfitted-level-3: chocolate;\n",
881
+ " /* Definition of color scheme for fitted estimators */\n",
882
+ " --sklearn-color-fitted-level-0: #f0f8ff;\n",
883
+ " --sklearn-color-fitted-level-1: #d4ebff;\n",
884
+ " --sklearn-color-fitted-level-2: #b3dbfd;\n",
885
+ " --sklearn-color-fitted-level-3: cornflowerblue;\n",
886
+ "\n",
887
+ " /* Specific color for light theme */\n",
888
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
889
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
890
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
891
+ " --sklearn-color-icon: #696969;\n",
892
+ "\n",
893
+ " @media (prefers-color-scheme: dark) {\n",
894
+ " /* Redefinition of color scheme for dark theme */\n",
895
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
896
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
897
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
898
+ " --sklearn-color-icon: #878787;\n",
899
+ " }\n",
900
+ "}\n",
901
+ "\n",
902
+ "#sk-container-id-1 {\n",
903
+ " color: var(--sklearn-color-text);\n",
904
+ "}\n",
905
+ "\n",
906
+ "#sk-container-id-1 pre {\n",
907
+ " padding: 0;\n",
908
+ "}\n",
909
+ "\n",
910
+ "#sk-container-id-1 input.sk-hidden--visually {\n",
911
+ " border: 0;\n",
912
+ " clip: rect(1px 1px 1px 1px);\n",
913
+ " clip: rect(1px, 1px, 1px, 1px);\n",
914
+ " height: 1px;\n",
915
+ " margin: -1px;\n",
916
+ " overflow: hidden;\n",
917
+ " padding: 0;\n",
918
+ " position: absolute;\n",
919
+ " width: 1px;\n",
920
+ "}\n",
921
+ "\n",
922
+ "#sk-container-id-1 div.sk-dashed-wrapped {\n",
923
+ " border: 1px dashed var(--sklearn-color-line);\n",
924
+ " margin: 0 0.4em 0.5em 0.4em;\n",
925
+ " box-sizing: border-box;\n",
926
+ " padding-bottom: 0.4em;\n",
927
+ " background-color: var(--sklearn-color-background);\n",
928
+ "}\n",
929
+ "\n",
930
+ "#sk-container-id-1 div.sk-container {\n",
931
+ " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
932
+ " but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
933
+ " so we also need the `!important` here to be able to override the\n",
934
+ " default hidden behavior on the sphinx rendered scikit-learn.org.\n",
935
+ " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
936
+ " display: inline-block !important;\n",
937
+ " position: relative;\n",
938
+ "}\n",
939
+ "\n",
940
+ "#sk-container-id-1 div.sk-text-repr-fallback {\n",
941
+ " display: none;\n",
942
+ "}\n",
943
+ "\n",
944
+ "div.sk-parallel-item,\n",
945
+ "div.sk-serial,\n",
946
+ "div.sk-item {\n",
947
+ " /* draw centered vertical line to link estimators */\n",
948
+ " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
949
+ " background-size: 2px 100%;\n",
950
+ " background-repeat: no-repeat;\n",
951
+ " background-position: center center;\n",
952
+ "}\n",
953
+ "\n",
954
+ "/* Parallel-specific style estimator block */\n",
955
+ "\n",
956
+ "#sk-container-id-1 div.sk-parallel-item::after {\n",
957
+ " content: \"\";\n",
958
+ " width: 100%;\n",
959
+ " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
960
+ " flex-grow: 1;\n",
961
+ "}\n",
962
+ "\n",
963
+ "#sk-container-id-1 div.sk-parallel {\n",
964
+ " display: flex;\n",
965
+ " align-items: stretch;\n",
966
+ " justify-content: center;\n",
967
+ " background-color: var(--sklearn-color-background);\n",
968
+ " position: relative;\n",
969
+ "}\n",
970
+ "\n",
971
+ "#sk-container-id-1 div.sk-parallel-item {\n",
972
+ " display: flex;\n",
973
+ " flex-direction: column;\n",
974
+ "}\n",
975
+ "\n",
976
+ "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
977
+ " align-self: flex-end;\n",
978
+ " width: 50%;\n",
979
+ "}\n",
980
+ "\n",
981
+ "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
982
+ " align-self: flex-start;\n",
983
+ " width: 50%;\n",
984
+ "}\n",
985
+ "\n",
986
+ "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
987
+ " width: 0;\n",
988
+ "}\n",
989
+ "\n",
990
+ "/* Serial-specific style estimator block */\n",
991
+ "\n",
992
+ "#sk-container-id-1 div.sk-serial {\n",
993
+ " display: flex;\n",
994
+ " flex-direction: column;\n",
995
+ " align-items: center;\n",
996
+ " background-color: var(--sklearn-color-background);\n",
997
+ " padding-right: 1em;\n",
998
+ " padding-left: 1em;\n",
999
+ "}\n",
1000
+ "\n",
1001
+ "\n",
1002
+ "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
1003
+ "clickable and can be expanded/collapsed.\n",
1004
+ "- Pipeline and ColumnTransformer use this feature and define the default style\n",
1005
+ "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
1006
+ "*/\n",
1007
+ "\n",
1008
+ "/* Pipeline and ColumnTransformer style (default) */\n",
1009
+ "\n",
1010
+ "#sk-container-id-1 div.sk-toggleable {\n",
1011
+ " /* Default theme specific background. It is overwritten whether we have a\n",
1012
+ " specific estimator or a Pipeline/ColumnTransformer */\n",
1013
+ " background-color: var(--sklearn-color-background);\n",
1014
+ "}\n",
1015
+ "\n",
1016
+ "/* Toggleable label */\n",
1017
+ "#sk-container-id-1 label.sk-toggleable__label {\n",
1018
+ " cursor: pointer;\n",
1019
+ " display: block;\n",
1020
+ " width: 100%;\n",
1021
+ " margin-bottom: 0;\n",
1022
+ " padding: 0.5em;\n",
1023
+ " box-sizing: border-box;\n",
1024
+ " text-align: center;\n",
1025
+ "}\n",
1026
+ "\n",
1027
+ "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
1028
+ " /* Arrow on the left of the label */\n",
1029
+ " content: \"▸\";\n",
1030
+ " float: left;\n",
1031
+ " margin-right: 0.25em;\n",
1032
+ " color: var(--sklearn-color-icon);\n",
1033
+ "}\n",
1034
+ "\n",
1035
+ "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
1036
+ " color: var(--sklearn-color-text);\n",
1037
+ "}\n",
1038
+ "\n",
1039
+ "/* Toggleable content - dropdown */\n",
1040
+ "\n",
1041
+ "#sk-container-id-1 div.sk-toggleable__content {\n",
1042
+ " max-height: 0;\n",
1043
+ " max-width: 0;\n",
1044
+ " overflow: hidden;\n",
1045
+ " text-align: left;\n",
1046
+ " /* unfitted */\n",
1047
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
1048
+ "}\n",
1049
+ "\n",
1050
+ "#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
1051
+ " /* fitted */\n",
1052
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
1053
+ "}\n",
1054
+ "\n",
1055
+ "#sk-container-id-1 div.sk-toggleable__content pre {\n",
1056
+ " margin: 0.2em;\n",
1057
+ " border-radius: 0.25em;\n",
1058
+ " color: var(--sklearn-color-text);\n",
1059
+ " /* unfitted */\n",
1060
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
1061
+ "}\n",
1062
+ "\n",
1063
+ "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
1064
+ " /* unfitted */\n",
1065
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
1066
+ "}\n",
1067
+ "\n",
1068
+ "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
1069
+ " /* Expand drop-down */\n",
1070
+ " max-height: 200px;\n",
1071
+ " max-width: 100%;\n",
1072
+ " overflow: auto;\n",
1073
+ "}\n",
1074
+ "\n",
1075
+ "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
1076
+ " content: \"▾\";\n",
1077
+ "}\n",
1078
+ "\n",
1079
+ "/* Pipeline/ColumnTransformer-specific style */\n",
1080
+ "\n",
1081
+ "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
1082
+ " color: var(--sklearn-color-text);\n",
1083
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
1084
+ "}\n",
1085
+ "\n",
1086
+ "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
1087
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
1088
+ "}\n",
1089
+ "\n",
1090
+ "/* Estimator-specific style */\n",
1091
+ "\n",
1092
+ "/* Colorize estimator box */\n",
1093
+ "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
1094
+ " /* unfitted */\n",
1095
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
1096
+ "}\n",
1097
+ "\n",
1098
+ "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
1099
+ " /* fitted */\n",
1100
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
1101
+ "}\n",
1102
+ "\n",
1103
+ "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
1104
+ "#sk-container-id-1 div.sk-label label {\n",
1105
+ " /* The background is the default theme color */\n",
1106
+ " color: var(--sklearn-color-text-on-default-background);\n",
1107
+ "}\n",
1108
+ "\n",
1109
+ "/* On hover, darken the color of the background */\n",
1110
+ "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
1111
+ " color: var(--sklearn-color-text);\n",
1112
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
1113
+ "}\n",
1114
+ "\n",
1115
+ "/* Label box, darken color on hover, fitted */\n",
1116
+ "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
1117
+ " color: var(--sklearn-color-text);\n",
1118
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
1119
+ "}\n",
1120
+ "\n",
1121
+ "/* Estimator label */\n",
1122
+ "\n",
1123
+ "#sk-container-id-1 div.sk-label label {\n",
1124
+ " font-family: monospace;\n",
1125
+ " font-weight: bold;\n",
1126
+ " display: inline-block;\n",
1127
+ " line-height: 1.2em;\n",
1128
+ "}\n",
1129
+ "\n",
1130
+ "#sk-container-id-1 div.sk-label-container {\n",
1131
+ " text-align: center;\n",
1132
+ "}\n",
1133
+ "\n",
1134
+ "/* Estimator-specific */\n",
1135
+ "#sk-container-id-1 div.sk-estimator {\n",
1136
+ " font-family: monospace;\n",
1137
+ " border: 1px dotted var(--sklearn-color-border-box);\n",
1138
+ " border-radius: 0.25em;\n",
1139
+ " box-sizing: border-box;\n",
1140
+ " margin-bottom: 0.5em;\n",
1141
+ " /* unfitted */\n",
1142
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
1143
+ "}\n",
1144
+ "\n",
1145
+ "#sk-container-id-1 div.sk-estimator.fitted {\n",
1146
+ " /* fitted */\n",
1147
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
1148
+ "}\n",
1149
+ "\n",
1150
+ "/* on hover */\n",
1151
+ "#sk-container-id-1 div.sk-estimator:hover {\n",
1152
+ " /* unfitted */\n",
1153
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
1154
+ "}\n",
1155
+ "\n",
1156
+ "#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
1157
+ " /* fitted */\n",
1158
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
1159
+ "}\n",
1160
+ "\n",
1161
+ "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
1162
+ "\n",
1163
+ "/* Common style for \"i\" and \"?\" */\n",
1164
+ "\n",
1165
+ ".sk-estimator-doc-link,\n",
1166
+ "a:link.sk-estimator-doc-link,\n",
1167
+ "a:visited.sk-estimator-doc-link {\n",
1168
+ " float: right;\n",
1169
+ " font-size: smaller;\n",
1170
+ " line-height: 1em;\n",
1171
+ " font-family: monospace;\n",
1172
+ " background-color: var(--sklearn-color-background);\n",
1173
+ " border-radius: 1em;\n",
1174
+ " height: 1em;\n",
1175
+ " width: 1em;\n",
1176
+ " text-decoration: none !important;\n",
1177
+ " margin-left: 1ex;\n",
1178
+ " /* unfitted */\n",
1179
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
1180
+ " color: var(--sklearn-color-unfitted-level-1);\n",
1181
+ "}\n",
1182
+ "\n",
1183
+ ".sk-estimator-doc-link.fitted,\n",
1184
+ "a:link.sk-estimator-doc-link.fitted,\n",
1185
+ "a:visited.sk-estimator-doc-link.fitted {\n",
1186
+ " /* fitted */\n",
1187
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
1188
+ " color: var(--sklearn-color-fitted-level-1);\n",
1189
+ "}\n",
1190
+ "\n",
1191
+ "/* On hover */\n",
1192
+ "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
1193
+ ".sk-estimator-doc-link:hover,\n",
1194
+ "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
1195
+ ".sk-estimator-doc-link:hover {\n",
1196
+ " /* unfitted */\n",
1197
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
1198
+ " color: var(--sklearn-color-background);\n",
1199
+ " text-decoration: none;\n",
1200
+ "}\n",
1201
+ "\n",
1202
+ "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
1203
+ ".sk-estimator-doc-link.fitted:hover,\n",
1204
+ "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
1205
+ ".sk-estimator-doc-link.fitted:hover {\n",
1206
+ " /* fitted */\n",
1207
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
1208
+ " color: var(--sklearn-color-background);\n",
1209
+ " text-decoration: none;\n",
1210
+ "}\n",
1211
+ "\n",
1212
+ "/* Span, style for the box shown on hovering the info icon */\n",
1213
+ ".sk-estimator-doc-link span {\n",
1214
+ " display: none;\n",
1215
+ " z-index: 9999;\n",
1216
+ " position: relative;\n",
1217
+ " font-weight: normal;\n",
1218
+ " right: .2ex;\n",
1219
+ " padding: .5ex;\n",
1220
+ " margin: .5ex;\n",
1221
+ " width: min-content;\n",
1222
+ " min-width: 20ex;\n",
1223
+ " max-width: 50ex;\n",
1224
+ " color: var(--sklearn-color-text);\n",
1225
+ " box-shadow: 2pt 2pt 4pt #999;\n",
1226
+ " /* unfitted */\n",
1227
+ " background: var(--sklearn-color-unfitted-level-0);\n",
1228
+ " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
1229
+ "}\n",
1230
+ "\n",
1231
+ ".sk-estimator-doc-link.fitted span {\n",
1232
+ " /* fitted */\n",
1233
+ " background: var(--sklearn-color-fitted-level-0);\n",
1234
+ " border: var(--sklearn-color-fitted-level-3);\n",
1235
+ "}\n",
1236
+ "\n",
1237
+ ".sk-estimator-doc-link:hover span {\n",
1238
+ " display: block;\n",
1239
+ "}\n",
1240
+ "\n",
1241
+ "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
1242
+ "\n",
1243
+ "#sk-container-id-1 a.estimator_doc_link {\n",
1244
+ " float: right;\n",
1245
+ " font-size: 1rem;\n",
1246
+ " line-height: 1em;\n",
1247
+ " font-family: monospace;\n",
1248
+ " background-color: var(--sklearn-color-background);\n",
1249
+ " border-radius: 1rem;\n",
1250
+ " height: 1rem;\n",
1251
+ " width: 1rem;\n",
1252
+ " text-decoration: none;\n",
1253
+ " /* unfitted */\n",
1254
+ " color: var(--sklearn-color-unfitted-level-1);\n",
1255
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
1256
+ "}\n",
1257
+ "\n",
1258
+ "#sk-container-id-1 a.estimator_doc_link.fitted {\n",
1259
+ " /* fitted */\n",
1260
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
1261
+ " color: var(--sklearn-color-fitted-level-1);\n",
1262
+ "}\n",
1263
+ "\n",
1264
+ "/* On hover */\n",
1265
+ "#sk-container-id-1 a.estimator_doc_link:hover {\n",
1266
+ " /* unfitted */\n",
1267
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
1268
+ " color: var(--sklearn-color-background);\n",
1269
+ " text-decoration: none;\n",
1270
+ "}\n",
1271
+ "\n",
1272
+ "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
1273
+ " /* fitted */\n",
1274
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
1275
+ "}\n",
1276
+ "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[(&#x27;encoding&#x27;,\n",
1277
+ " ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
1278
+ " transformers=[(&#x27;ohe&#x27;,\n",
1279
+ " OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),\n",
1280
+ " [&#x27;PromoInterval&#x27;, &#x27;StoreType&#x27;,\n",
1281
+ " &#x27;Assortment&#x27;])])),\n",
1282
+ " (&#x27;scaler&#x27;, StandardScaler()),\n",
1283
+ " (&#x27;model&#x27;,\n",
1284
+ " XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
1285
+ " colsample_bylevel=None, colsample_bynode=None,\n",
1286
+ " colsample_bytree=None, device=None,...\n",
1287
+ " feature_types=None, gamma=None, grow_policy=None,\n",
1288
+ " importance_type=None,\n",
1289
+ " interaction_constraints=None, learning_rate=0.1,\n",
1290
+ " max_bin=None, max_cat_threshold=None,\n",
1291
+ " max_cat_to_onehot=None, max_delta_step=None,\n",
1292
+ " max_depth=13, max_leaves=None,\n",
1293
+ " min_child_weight=None, missing=nan,\n",
1294
+ " monotone_constraints=None, multi_strategy=None,\n",
1295
+ " n_estimators=None, n_jobs=None,\n",
1296
+ " num_parallel_tree=None, random_state=None, ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;Pipeline<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html\">?<span>Documentation for Pipeline</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>Pipeline(steps=[(&#x27;encoding&#x27;,\n",
1297
+ " ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
1298
+ " transformers=[(&#x27;ohe&#x27;,\n",
1299
+ " OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),\n",
1300
+ " [&#x27;PromoInterval&#x27;, &#x27;StoreType&#x27;,\n",
1301
+ " &#x27;Assortment&#x27;])])),\n",
1302
+ " (&#x27;scaler&#x27;, StandardScaler()),\n",
1303
+ " (&#x27;model&#x27;,\n",
1304
+ " XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
1305
+ " colsample_bylevel=None, colsample_bynode=None,\n",
1306
+ " colsample_bytree=None, device=None,...\n",
1307
+ " feature_types=None, gamma=None, grow_policy=None,\n",
1308
+ " importance_type=None,\n",
1309
+ " interaction_constraints=None, learning_rate=0.1,\n",
1310
+ " max_bin=None, max_cat_threshold=None,\n",
1311
+ " max_cat_to_onehot=None, max_delta_step=None,\n",
1312
+ " max_depth=13, max_leaves=None,\n",
1313
+ " min_child_weight=None, missing=nan,\n",
1314
+ " monotone_constraints=None, multi_strategy=None,\n",
1315
+ " n_estimators=None, n_jobs=None,\n",
1316
+ " num_parallel_tree=None, random_state=None, ...))])</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;encoding: ColumnTransformer<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html\">?<span>Documentation for encoding: ColumnTransformer</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,\n",
1317
+ " transformers=[(&#x27;ohe&#x27;, OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),\n",
1318
+ " [&#x27;PromoInterval&#x27;, &#x27;StoreType&#x27;, &#x27;Assortment&#x27;])])</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">ohe</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;PromoInterval&#x27;, &#x27;StoreType&#x27;, &#x27;Assortment&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;OneHotEncoder<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OneHotEncoder.html\">?<span>Documentation for OneHotEncoder</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div> </div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">remainder</label><div class=\"sk-toggleable__content fitted\"><pre>[&#x27;StateHoliday&#x27;, &#x27;Store&#x27;, &#x27;Customers&#x27;, &#x27;Promo&#x27;, &#x27;SchoolHoliday&#x27;, &#x27;CompetitionDistance&#x27;, &#x27;CompetitionOpenSinceMonth&#x27;, &#x27;CompetitionOpenSinceYear&#x27;]</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">passthrough</label><div class=\"sk-toggleable__content fitted\"><pre>passthrough</pre></div> </div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" ><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;StandardScaler<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.StandardScaler.html\">?<span>Documentation for StandardScaler</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>StandardScaler()</pre></div> </div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" ><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">XGBRegressor</label><div class=\"sk-toggleable__content fitted\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
1319
+ " colsample_bylevel=None, colsample_bynode=None,\n",
1320
+ " colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
1321
+ " enable_categorical=False, eval_metric=None, feature_types=None,\n",
1322
+ " gamma=None, grow_policy=None, importance_type=None,\n",
1323
+ " interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
1324
+ " max_cat_threshold=None, max_cat_to_onehot=None,\n",
1325
+ " max_delta_step=None, max_depth=13, max_leaves=None,\n",
1326
+ " min_child_weight=None, missing=nan, monotone_constraints=None,\n",
1327
+ " multi_strategy=None, n_estimators=None, n_jobs=None,\n",
1328
+ " num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>"
1329
+ ],
1330
+ "text/plain": [
1331
+ "Pipeline(steps=[('encoding',\n",
1332
+ " ColumnTransformer(remainder='passthrough',\n",
1333
+ " transformers=[('ohe',\n",
1334
+ " OneHotEncoder(handle_unknown='ignore'),\n",
1335
+ " ['PromoInterval', 'StoreType',\n",
1336
+ " 'Assortment'])])),\n",
1337
+ " ('scaler', StandardScaler()),\n",
1338
+ " ('model',\n",
1339
+ " XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
1340
+ " colsample_bylevel=None, colsample_bynode=None,\n",
1341
+ " colsample_bytree=None, device=None,...\n",
1342
+ " feature_types=None, gamma=None, grow_policy=None,\n",
1343
+ " importance_type=None,\n",
1344
+ " interaction_constraints=None, learning_rate=0.1,\n",
1345
+ " max_bin=None, max_cat_threshold=None,\n",
1346
+ " max_cat_to_onehot=None, max_delta_step=None,\n",
1347
+ " max_depth=13, max_leaves=None,\n",
1348
+ " min_child_weight=None, missing=nan,\n",
1349
+ " monotone_constraints=None, multi_strategy=None,\n",
1350
+ " n_estimators=None, n_jobs=None,\n",
1351
+ " num_parallel_tree=None, random_state=None, ...))])"
1352
+ ]
1353
+ },
1354
+ "execution_count": 20,
1355
+ "metadata": {},
1356
+ "output_type": "execute_result"
1357
+ }
1358
+ ],
1359
+ "source": [
1360
+ "# Define the ColumnTransformer\n",
1361
+ "ohe_col = [\"PromoInterval\", \"StoreType\", \"Assortment\"]\n",
1362
+ "\n",
1363
+ "ct_encoding = ColumnTransformer(\n",
1364
+ " transformers=[\n",
1365
+ " (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\"), ohe_col)\n",
1366
+ " ],\n",
1367
+ " remainder=\"passthrough\"\n",
1368
+ ")\n",
1369
+ "\n",
1370
+ "\n",
1371
+ "# Define the XGBRegressor model\n",
1372
+ "model = XGBRegressor(learning_rate=0.1, max_depth=13)\n",
1373
+ "\n",
1374
+ "# Define the pipeline\n",
1375
+ "pipe = Pipeline(steps=[\n",
1376
+ " (\"encoding\", ct_encoding),\n",
1377
+ " (\"scaler\", StandardScaler()),\n",
1378
+ " (\"model\", model)\n",
1379
+ "])\n",
1380
+ "\n",
1381
+ "# Now you can fit your pipeline with your data\n",
1382
+ "pipe.fit(X_train, y_train)\n"
1383
+ ]
1384
+ },
1385
+ {
1386
+ "cell_type": "code",
1387
+ "execution_count": 21,
1388
+ "metadata": {},
1389
+ "outputs": [
1390
+ {
1391
+ "data": {
1392
+ "text/plain": [
1393
+ "array([5674.2217, 7922.6377, 9180.126 , ..., 7287.449 , 3228.0945,\n",
1394
+ " 4453.9897], dtype=float32)"
1395
+ ]
1396
+ },
1397
+ "execution_count": 21,
1398
+ "metadata": {},
1399
+ "output_type": "execute_result"
1400
+ }
1401
+ ],
1402
+ "source": [
1403
+ "y_pred = pipe.predict(X_test)\n",
1404
+ "y_pred"
1405
+ ]
1406
+ },
1407
+ {
1408
+ "cell_type": "code",
1409
+ "execution_count": 22,
1410
+ "metadata": {},
1411
+ "outputs": [
1412
+ {
1413
+ "data": {
1414
+ "text/plain": [
1415
+ "43879 5934\n",
1416
+ "562681 7800\n",
1417
+ "239643 9111\n",
1418
+ "689976 7831\n",
1419
+ "397240 10046\n",
1420
+ " ... \n",
1421
+ "512864 13692\n",
1422
+ "750784 6958\n",
1423
+ "192729 6785\n",
1424
+ "755727 2925\n",
1425
+ "604917 4178\n",
1426
+ "Name: Sales, Length: 211085, dtype: int64"
1427
+ ]
1428
+ },
1429
+ "execution_count": 22,
1430
+ "metadata": {},
1431
+ "output_type": "execute_result"
1432
+ }
1433
+ ],
1434
+ "source": [
1435
+ "y_test"
1436
+ ]
1437
+ },
1438
+ {
1439
+ "cell_type": "code",
1440
+ "execution_count": 23,
1441
+ "metadata": {},
1442
+ "outputs": [
1443
+ {
1444
+ "data": {
1445
+ "text/plain": [
1446
+ "Index(['PromoInterval', 'StoreType', 'Assortment', 'StateHoliday', 'Store',\n",
1447
+ " 'Customers', 'Promo', 'SchoolHoliday', 'CompetitionDistance',\n",
1448
+ " 'CompetitionOpenSinceMonth', 'CompetitionOpenSinceYear'],\n",
1449
+ " dtype='object')"
1450
+ ]
1451
+ },
1452
+ "execution_count": 23,
1453
+ "metadata": {},
1454
+ "output_type": "execute_result"
1455
+ }
1456
+ ],
1457
+ "source": [
1458
+ "X_train.columns"
1459
+ ]
1460
+ },
1461
+ {
1462
+ "cell_type": "code",
1463
+ "execution_count": 24,
1464
+ "metadata": {},
1465
+ "outputs": [
1466
+ {
1467
+ "data": {
1468
+ "text/html": [
1469
+ "<div>\n",
1470
+ "<style scoped>\n",
1471
+ " .dataframe tbody tr th:only-of-type {\n",
1472
+ " vertical-align: middle;\n",
1473
+ " }\n",
1474
+ "\n",
1475
+ " .dataframe tbody tr th {\n",
1476
+ " vertical-align: top;\n",
1477
+ " }\n",
1478
+ "\n",
1479
+ " .dataframe thead th {\n",
1480
+ " text-align: right;\n",
1481
+ " }\n",
1482
+ "</style>\n",
1483
+ "<table border=\"1\" class=\"dataframe\">\n",
1484
+ " <thead>\n",
1485
+ " <tr style=\"text-align: right;\">\n",
1486
+ " <th></th>\n",
1487
+ " <th>PromoInterval</th>\n",
1488
+ " <th>StoreType</th>\n",
1489
+ " <th>Assortment</th>\n",
1490
+ " <th>StateHoliday</th>\n",
1491
+ " <th>Store</th>\n",
1492
+ " <th>Customers</th>\n",
1493
+ " <th>Promo</th>\n",
1494
+ " <th>SchoolHoliday</th>\n",
1495
+ " <th>CompetitionDistance</th>\n",
1496
+ " <th>CompetitionOpenSinceMonth</th>\n",
1497
+ " <th>CompetitionOpenSinceYear</th>\n",
1498
+ " </tr>\n",
1499
+ " </thead>\n",
1500
+ " <tbody>\n",
1501
+ " <tr>\n",
1502
+ " <th>795018</th>\n",
1503
+ " <td>Jan,Apr,Jul,Oct</td>\n",
1504
+ " <td>Small Shop</td>\n",
1505
+ " <td>basic</td>\n",
1506
+ " <td>0</td>\n",
1507
+ " <td>650</td>\n",
1508
+ " <td>636</td>\n",
1509
+ " <td>1</td>\n",
1510
+ " <td>0</td>\n",
1511
+ " <td>1420</td>\n",
1512
+ " <td>10</td>\n",
1513
+ " <td>2012</td>\n",
1514
+ " </tr>\n",
1515
+ " <tr>\n",
1516
+ " <th>463276</th>\n",
1517
+ " <td>Jan,Apr,Jul,Oct</td>\n",
1518
+ " <td>Small Shop</td>\n",
1519
+ " <td>basic</td>\n",
1520
+ " <td>0</td>\n",
1521
+ " <td>72</td>\n",
1522
+ " <td>261</td>\n",
1523
+ " <td>0</td>\n",
1524
+ " <td>0</td>\n",
1525
+ " <td>2200</td>\n",
1526
+ " <td>12</td>\n",
1527
+ " <td>2009</td>\n",
1528
+ " </tr>\n",
1529
+ " <tr>\n",
1530
+ " <th>268352</th>\n",
1531
+ " <td>0</td>\n",
1532
+ " <td>Medium Store</td>\n",
1533
+ " <td>extra</td>\n",
1534
+ " <td>0</td>\n",
1535
+ " <td>733</td>\n",
1536
+ " <td>3567</td>\n",
1537
+ " <td>1</td>\n",
1538
+ " <td>0</td>\n",
1539
+ " <td>860</td>\n",
1540
+ " <td>10</td>\n",
1541
+ " <td>1999</td>\n",
1542
+ " </tr>\n",
1543
+ " <tr>\n",
1544
+ " <th>67308</th>\n",
1545
+ " <td>0</td>\n",
1546
+ " <td>Small Shop</td>\n",
1547
+ " <td>extended</td>\n",
1548
+ " <td>0</td>\n",
1549
+ " <td>796</td>\n",
1550
+ " <td>791</td>\n",
1551
+ " <td>1</td>\n",
1552
+ " <td>0</td>\n",
1553
+ " <td>7180</td>\n",
1554
+ " <td>11</td>\n",
1555
+ " <td>2012</td>\n",
1556
+ " </tr>\n",
1557
+ " <tr>\n",
1558
+ " <th>482458</th>\n",
1559
+ " <td>0</td>\n",
1560
+ " <td>Small Shop</td>\n",
1561
+ " <td>extended</td>\n",
1562
+ " <td>0</td>\n",
1563
+ " <td>301</td>\n",
1564
+ " <td>480</td>\n",
1565
+ " <td>0</td>\n",
1566
+ " <td>0</td>\n",
1567
+ " <td>4510</td>\n",
1568
+ " <td>3</td>\n",
1569
+ " <td>2015</td>\n",
1570
+ " </tr>\n",
1571
+ " </tbody>\n",
1572
+ "</table>\n",
1573
+ "</div>"
1574
+ ],
1575
+ "text/plain": [
1576
+ " PromoInterval StoreType Assortment StateHoliday Store \\\n",
1577
+ "795018 Jan,Apr,Jul,Oct Small Shop basic 0 650 \n",
1578
+ "463276 Jan,Apr,Jul,Oct Small Shop basic 0 72 \n",
1579
+ "268352 0 Medium Store extra 0 733 \n",
1580
+ "67308 0 Small Shop extended 0 796 \n",
1581
+ "482458 0 Small Shop extended 0 301 \n",
1582
+ "\n",
1583
+ " Customers Promo SchoolHoliday CompetitionDistance \\\n",
1584
+ "795018 636 1 0 1420 \n",
1585
+ "463276 261 0 0 2200 \n",
1586
+ "268352 3567 1 0 860 \n",
1587
+ "67308 791 1 0 7180 \n",
1588
+ "482458 480 0 0 4510 \n",
1589
+ "\n",
1590
+ " CompetitionOpenSinceMonth CompetitionOpenSinceYear \n",
1591
+ "795018 10 2012 \n",
1592
+ "463276 12 2009 \n",
1593
+ "268352 10 1999 \n",
1594
+ "67308 11 2012 \n",
1595
+ "482458 3 2015 "
1596
+ ]
1597
+ },
1598
+ "execution_count": 24,
1599
+ "metadata": {},
1600
+ "output_type": "execute_result"
1601
+ }
1602
+ ],
1603
+ "source": [
1604
+ "X_train.head()"
1605
+ ]
1606
+ },
1607
+ {
1608
+ "cell_type": "code",
1609
+ "execution_count": 26,
1610
+ "metadata": {},
1611
+ "outputs": [
1612
+ {
1613
+ "data": {
1614
+ "text/html": [
1615
+ "<div>\n",
1616
+ "<style scoped>\n",
1617
+ " .dataframe tbody tr th:only-of-type {\n",
1618
+ " vertical-align: middle;\n",
1619
+ " }\n",
1620
+ "\n",
1621
+ " .dataframe tbody tr th {\n",
1622
+ " vertical-align: top;\n",
1623
+ " }\n",
1624
+ "\n",
1625
+ " .dataframe thead th {\n",
1626
+ " text-align: right;\n",
1627
+ " }\n",
1628
+ "</style>\n",
1629
+ "<table border=\"1\" class=\"dataframe\">\n",
1630
+ " <thead>\n",
1631
+ " <tr style=\"text-align: right;\">\n",
1632
+ " <th></th>\n",
1633
+ " <th>PromoInterval</th>\n",
1634
+ " <th>StoreType</th>\n",
1635
+ " <th>Assortment</th>\n",
1636
+ " <th>StateHoliday</th>\n",
1637
+ " <th>Store</th>\n",
1638
+ " <th>Customers</th>\n",
1639
+ " <th>Promo</th>\n",
1640
+ " <th>SchoolHoliday</th>\n",
1641
+ " <th>CompetitionDistance</th>\n",
1642
+ " <th>CompetitionOpenSinceMonth</th>\n",
1643
+ " <th>CompetitionOpenSinceYear</th>\n",
1644
+ " </tr>\n",
1645
+ " </thead>\n",
1646
+ " <tbody>\n",
1647
+ " <tr>\n",
1648
+ " <th>0</th>\n",
1649
+ " <td>Jan,Apr,Jul,Oct</td>\n",
1650
+ " <td>Small Shop</td>\n",
1651
+ " <td>basic</td>\n",
1652
+ " <td>0</td>\n",
1653
+ " <td>650</td>\n",
1654
+ " <td>636</td>\n",
1655
+ " <td>1</td>\n",
1656
+ " <td>0</td>\n",
1657
+ " <td>1420</td>\n",
1658
+ " <td>10</td>\n",
1659
+ " <td>2012</td>\n",
1660
+ " </tr>\n",
1661
+ " </tbody>\n",
1662
+ "</table>\n",
1663
+ "</div>"
1664
+ ],
1665
+ "text/plain": [
1666
+ " PromoInterval StoreType Assortment StateHoliday Store Customers Promo \\\n",
1667
+ "0 Jan,Apr,Jul,Oct Small Shop basic 0 650 636 1 \n",
1668
+ "\n",
1669
+ " SchoolHoliday CompetitionDistance CompetitionOpenSinceMonth \\\n",
1670
+ "0 0 1420 10 \n",
1671
+ "\n",
1672
+ " CompetitionOpenSinceYear \n",
1673
+ "0 2012 "
1674
+ ]
1675
+ },
1676
+ "execution_count": 26,
1677
+ "metadata": {},
1678
+ "output_type": "execute_result"
1679
+ }
1680
+ ],
1681
+ "source": [
1682
+ "# 795018\n",
1683
+ "temp_df = pd.DataFrame(data = [[\"Jan,Apr,Jul,Oct\",\"Small Shop\",\"basic\",\"0\",\"650\",\"636\",\"1\",\"0\",\"1420\",\"10\",\"2012\"]], columns = X_test.columns)\n",
1684
+ "temp_df"
1685
+ ]
1686
+ },
1687
+ {
1688
+ "cell_type": "code",
1689
+ "execution_count": 27,
1690
+ "metadata": {},
1691
+ "outputs": [
1692
+ {
1693
+ "data": {
1694
+ "text/plain": [
1695
+ "array([6357.158], dtype=float32)"
1696
+ ]
1697
+ },
1698
+ "execution_count": 27,
1699
+ "metadata": {},
1700
+ "output_type": "execute_result"
1701
+ }
1702
+ ],
1703
+ "source": [
1704
+ "pipe.predict(temp_df)"
1705
+ ]
1706
+ },
1707
+ {
1708
+ "cell_type": "code",
1709
+ "execution_count": 31,
1710
+ "metadata": {},
1711
+ "outputs": [
1712
+ {
1713
+ "name": "stdout",
1714
+ "output_type": "stream",
1715
+ "text": [
1716
+ "Record at index 795018:\n",
1717
+ "PromoInterval Jan,Apr,Jul,Oct\n",
1718
+ "StoreType Small Shop\n",
1719
+ "Assortment basic\n",
1720
+ "StateHoliday 0\n",
1721
+ "Store 650\n",
1722
+ "Customers 636\n",
1723
+ "Promo 1\n",
1724
+ "SchoolHoliday 0\n",
1725
+ "CompetitionDistance 1420\n",
1726
+ "CompetitionOpenSinceMonth 10\n",
1727
+ "CompetitionOpenSinceYear 2012\n",
1728
+ "Sales 6322\n",
1729
+ "Name: 795018, dtype: object\n"
1730
+ ]
1731
+ }
1732
+ ],
1733
+ "source": [
1734
+ "# Assuming your DataFrame is named df\n",
1735
+ "record = df.iloc[795018]\n",
1736
+ "\n",
1737
+ "print(\"Record at index 795018:\")\n",
1738
+ "print(record)\n"
1739
+ ]
1740
+ },
1741
+ {
1742
+ "cell_type": "code",
1743
+ "execution_count": 30,
1744
+ "metadata": {},
1745
+ "outputs": [
1746
+ {
1747
+ "name": "stdout",
1748
+ "output_type": "stream",
1749
+ "text": [
1750
+ "Unique values in PromoInterval: ['0' 'Jan,Apr,Jul,Oct' 'Feb,May,Aug,Nov' 'Mar,Jun,Sept,Dec']\n",
1751
+ "Unique values in StoreType: ['Large Store' 'Small Shop' 'Hypermarket' 'Medium Store']\n",
1752
+ "Unique values in Assortment: ['basic' 'extended' 'extra']\n",
1753
+ "Unique values in StateHoliday: [0 1]\n",
1754
+ "Unique values in Store: [ 1 2 3 ... 1115 876 292]\n",
1755
+ "Unique values in Customers: [ 555 625 821 ... 3900 36 4065]\n",
1756
+ "Unique values in Promo: [1 0]\n",
1757
+ "Unique values in SchoolHoliday: [1 0]\n",
1758
+ "Unique values in CompetitionDistance: [ 1270 570 14130 620 29910 310 24000 7520 2030 3160 960 1070\n",
1759
+ " 1300 4110 3270 50 13840 3240 2340 550 1040 4060 4590 430\n",
1760
+ " 2300 60 1200 2170 40 9800 2910 1320 2240 7660 540 4230\n",
1761
+ " 1090 260 180 1180 290 4880 9710 270 1060 18010 6260 10570\n",
1762
+ " 450 30360 7170 720 6620 420 7340 2840 5540 350 2050 3700\n",
1763
+ " 22560 410 250 1130 4840 17500 2200 1650 330 22440 19960 3510\n",
1764
+ " 3320 7910 2370 22390 2710 11810 1870 480 560 10690 2380 2410\n",
1765
+ " 240 16690 14620 1890 8780 8980 15140 17930 2440 150 5210 390\n",
1766
+ " 6190 1390 1930 2190 3300 46590 7890 1630 20930 4510 5740 680\n",
1767
+ " 3450 3580 2100 2290 3570 58260 16760 1410 760 3370 1350 2000\n",
1768
+ " 2460 900 920 5190 1730 25360 1700 1540 2930 16570 280 8050\n",
1769
+ " 8540 2090 2610 31830 4360 1780 16240 16420 3050 2020 2950 11840\n",
1770
+ " 8530 17110 2970 5340 1480 1160 3720 100 140 12540 980 2640\n",
1771
+ " 110 13090 4130 3770 1250 1710 5800 12610 9670 3560 1860 19360\n",
1772
+ " 850 5760 1470 1100 2770 520 16970 220 3850 4210 6360 20260\n",
1773
+ " 5140 490 5630 380 6870 300 11680 970 15050 4030 8650 190\n",
1774
+ " 3150 640 1640 1000 13530 2920 7930 10180 10800 17410 6680 3840\n",
1775
+ " 13570 4370 5710 1420 320 610 1110 780 6880 710 1310 4660\n",
1776
+ " 70 340 3520 22330 4630 80 27190 210 15340 1140 4580 360\n",
1777
+ " 4520 1450 16180 8480 3640 2960 7840 9260 2320 18640 6970 1220\n",
1778
+ " 2260 1290 1460 2740 800 6540 4150 2325 9580 19840 38630 120\n",
1779
+ " 15430 1950 2470 5100 18660 8740 11300 14160 38710 9000 3140 32330\n",
1780
+ " 8140 8400 13140 10070 3130 370 670 1840 4040 90 10600 1590\n",
1781
+ " 2280 8080 15770 18650 8090 9360 16490 1490 8880 5290 1500 9720\n",
1782
+ " 8970 2060 2890 2040 4490 13620 6470 5870 8250 1970 11120 1150\n",
1783
+ " 15710 160 2140 6630 1800 26130 130 6690 1600 460 2120 4820\n",
1784
+ " 10850 3620 23130 5360 9200 5830 4970 1080 8240 5890 1560 840\n",
1785
+ " 8460 4460 6210 6910 4650 1620 3530 2880 16350 12870 810 30030\n",
1786
+ " 13020 910 3900 2530 500 11400 1510 3970 5780 1850 75860 26450\n",
1787
+ " 3390 34050 1790 44320 4160 10890 3110 20390 5260 5300 5030 14810\n",
1788
+ " 8300 770 1940 7470 2550 2310 14300 2180 14960 660 4680 1740\n",
1789
+ " 1260 5470 2780 1610 990 13080 820 9070 1280 4740 8260 590\n",
1790
+ " 400 11260 20 22490 3330 2510 6900 18610 7160 40860 20620 12920\n",
1791
+ " 18160 5950 4700 600 650 7280 5020 580 8990 3760 2330 4260\n",
1792
+ " 3040 3000 3910 1910 1210 700 1010 4270 1340 2110 9230 1190\n",
1793
+ " 4400 2270 12700 20970 170 7250 1360 440 15720 3340 2540 33060\n",
1794
+ " 17340 8220 10950 10310 18370 2070 2490 730 8940 9910 5440 30\n",
1795
+ " 4080 6920 1170 10740 510 1690 2870 3350 11640 27530 9790 10170\n",
1796
+ " 7780 8040 530 230 7420 2130 14570 200 6930 7860 1680 2700\n",
1797
+ " 17080 15170 3250 4140 2850 20050 18760 15040 3030 3780 830 8550\n",
1798
+ " 7830 2900 11470 4870 12070 3200 8190 15320 3590 5650 5900 17540\n",
1799
+ " 40540 13990 15270 35280 860 1920 5980 6400 11900 4380 6710 1370\n",
1800
+ " 17650 4330 45740 3410 8670 13130 19780 2390 32240 26490 25430 9820\n",
1801
+ " 2630 20640 16990 630 5390 15490 3210 1530 9770 17280 5090 7180\n",
1802
+ " 9560 48330 1760 24770 3870 18620 12770 9640 2590 24530 16210 17570\n",
1803
+ " 7980 3290 6320 5070 3470 2720 14600 6890 27650 8860 5000 1120\n",
1804
+ " 940 14040 4770 3440 3020 6270 21770 740 21370 1020 9680 21810\n",
1805
+ " 10620 3860 29190 4570 7550 12430 19700 4450 18670 19370 18540 3920\n",
1806
+ " 3170 7290 1980 12480 3100 7240 18710 2620 6420 470 5150 15700\n",
1807
+ " 5460 22350 2810 2820 6860 18020 1670 2220 1430 870 6300 19830\n",
1808
+ " 9430 23620 9630 4180 3890 4420 21930 2480 3460 6560 5840 2230\n",
1809
+ " 19640 6480 4610 6330 1520 3740 1990 36410 7680 13750 27150 17290\n",
1810
+ " 26990 29070 3750 13170 5080 13190 5350 3230 3380 3430 8110 6250\n",
1811
+ " 12020 5010 18050 5380 16680 11540 2210 4300 5220 9990 10450 690\n",
1812
+ " 1830 5330 1400 3490 1900 1880 21790]\n",
1813
+ "Unique values in CompetitionOpenSinceMonth: [ 9 11 12 4 10 8 3 6 5 1 2 7]\n",
1814
+ "Unique values in CompetitionOpenSinceYear: [2008 2007 2006 2009 2015 2013 2014 2000 2011 2010 2005 1999 2003 2012\n",
1815
+ " 2004 2002 1961 1995 2001 1990 1994 1900 1998]\n",
1816
+ "Unique values in Sales: [ 5263 6064 8314 ... 660 17815 23303]\n"
1817
+ ]
1818
+ }
1819
+ ],
1820
+ "source": [
1821
+ "def print_unique_values(dataframe):\n",
1822
+ " for column in dataframe.columns:\n",
1823
+ " unique_values = dataframe[column].unique()\n",
1824
+ " print(f\"Unique values in {column}: {unique_values}\")\n",
1825
+ "\n",
1826
+ "# Example usage:\n",
1827
+ "print_unique_values(df)\n"
1828
+ ]
1829
+ },
1830
+ {
1831
+ "cell_type": "markdown",
1832
+ "metadata": {},
1833
+ "source": [
1834
+ "## Save The Model "
1835
+ ]
1836
+ },
1837
+ {
1838
+ "cell_type": "code",
1839
+ "execution_count": 32,
1840
+ "metadata": {},
1841
+ "outputs": [
1842
+ {
1843
+ "data": {
1844
+ "text/plain": [
1845
+ "['model2.pkl']"
1846
+ ]
1847
+ },
1848
+ "execution_count": 32,
1849
+ "metadata": {},
1850
+ "output_type": "execute_result"
1851
+ }
1852
+ ],
1853
+ "source": [
1854
+ "import joblib\n",
1855
+ "\n",
1856
+ "# joblib.dump(pipe, 'model2.pkl')"
1857
+ ]
1858
+ },
1859
+ {
1860
+ "cell_type": "code",
1861
+ "execution_count": 33,
1862
+ "metadata": {},
1863
+ "outputs": [],
1864
+ "source": [
1865
+ "model1 = joblib.load(\"../models/model2.pkl\")"
1866
+ ]
1867
+ },
1868
+ {
1869
+ "cell_type": "code",
1870
+ "execution_count": 34,
1871
+ "metadata": {},
1872
+ "outputs": [
1873
+ {
1874
+ "data": {
1875
+ "text/plain": [
1876
+ "array([6357.158], dtype=float32)"
1877
+ ]
1878
+ },
1879
+ "execution_count": 34,
1880
+ "metadata": {},
1881
+ "output_type": "execute_result"
1882
+ }
1883
+ ],
1884
+ "source": [
1885
+ "model1.predict(temp_df)"
1886
+ ]
1887
+ },
1888
+ {
1889
+ "cell_type": "markdown",
1890
+ "metadata": {},
1891
+ "source": [
1892
+ "# ..."
1893
+ ]
1894
+ },
1895
+ {
1896
+ "cell_type": "markdown",
1897
+ "metadata": {},
1898
+ "source": [
1899
+ "<hr>\n"
1900
+ ]
1901
+ }
1902
+ ],
1903
+ "metadata": {
1904
+ "kernelspec": {
1905
+ "display_name": "Python 3",
1906
+ "language": "python",
1907
+ "name": "python3"
1908
+ },
1909
+ "language_info": {
1910
+ "codemirror_mode": {
1911
+ "name": "ipython",
1912
+ "version": 3
1913
+ },
1914
+ "file_extension": ".py",
1915
+ "mimetype": "text/x-python",
1916
+ "name": "python",
1917
+ "nbconvert_exporter": "python",
1918
+ "pygments_lexer": "ipython3",
1919
+ "version": "3.10.11"
1920
+ }
1921
+ },
1922
+ "nbformat": 4,
1923
+ "nbformat_minor": 2
1924
+ }
Requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Joblib
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import joblib
5
+ import pickle
6
+
7
+ # Load your trained model
8
+ model = joblib.load('models\model1.pkl')
9
+
10
+
11
+ # with open('models/model1.pkl', 'rb') as file:
12
+ # model = pickle.load(file)
13
+
14
+ # Function to predict sales
15
+ def predict_sales(input_data):
16
+ # Make predictions using the loaded model
17
+ sales_prediction = model.predict(input_data)
18
+ return sales_prediction
19
+
20
+ # Streamlit app
21
+ def main():
22
+ st.title('Sales Prediction App')
23
+ st.image("images\\r1.jpg", caption="Sunrise by the mountains")
24
+
25
+ # Input widgets
26
+ PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
27
+
28
+ # -----------------------------------------------------------------------------------------------
29
+ StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
30
+ Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
31
+
32
+
33
+ # Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
34
+ StateHoliday = st.radio("State Holiday", ["Yes", "No"])
35
+ StateHoliday = 1 if StateHoliday == "Yes" else 0
36
+
37
+ SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
38
+ SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
39
+
40
+ Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
41
+ Promo = 1 if Promo == "store is participating" else 0
42
+ # ----------------------------------------------------------------------------------------
43
+
44
+
45
+ Store = st.slider("Store", 1, 1115)
46
+ Customers = st.slider("Customers", 0, 7388)
47
+ CompetitionDistance = st.slider("Competition Distance", 20, 75860)
48
+ CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
49
+ CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
50
+ # ----------------------------------------------------------------------------------------
51
+
52
+ # Store user inputs
53
+ input_data = pd.DataFrame({
54
+ 'PromoInterval': [PromoInterval],
55
+ 'StoreType': [StoreType],
56
+ 'Assortment': [Assortment],
57
+ 'StateHoliday': [StateHoliday],
58
+ 'Store': [Store],
59
+ 'Customers': [Customers],
60
+ 'Promo': [Promo],
61
+ 'SchoolHoliday': [SchoolHoliday],
62
+ 'CompetitionDistance': [CompetitionDistance],
63
+ 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
64
+ 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
65
+ })
66
+
67
+ # Display input data
68
+ st.subheader('Input Data:')
69
+ st.write(input_data)
70
+
71
+ # Predict sales
72
+ # if st.button('Predict Sales'):
73
+ # prediction = predict_sales(input_data)
74
+ # st.write('Predicted Sales:', prediction)
75
+
76
+ if st.button('Predict Sales'):
77
+ prediction = predict_sales(input_data)[0]
78
+ formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
79
+ st.write('Predicted Sales:', formatted_prediction)
80
+
81
+
82
+ if __name__ == '__main__':
83
+ main()
84
+
85
+
86
+
87
+ # Record at index 795018:
88
+ # PromoInterval Jan,Apr,Jul,Oct
89
+ # StoreType Small Shop
90
+ # Assortment basic
91
+ # StateHoliday 0
92
+ # Store 650
93
+ # Customers 636
94
+ # Promo 1
95
+ # SchoolHoliday 0
96
+ # CompetitionDistance 1420
97
+ # CompetitionOpenSinceMonth 10
98
+ # CompetitionOpenSinceYear 2012
99
+ # Sales 6322
100
+ # Name: 795018, dtype: object
images/mg.png ADDED
images/r1.jpg ADDED
images/r1.png ADDED
images/r2.png ADDED

Git LFS Details

  • SHA256: badfef968478673e96091d21470e52756923001e678509c1e68dd14e86416f6a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.02 MB
models/Rossmann_Model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a4264097df040b74694426b0b55cd70008790bec56cdeefa4eb7de0144096d1
3
+ size 22628002
models/model1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f44f412a489f3fe693806f91c0b379f6fa5ba685d29f905dacaf223449ac6279
3
+ size 22632250
pages/Data Overview.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+
4
+ # st.title("hi")
5
+
6
+ # Function for data overview
7
+ def show_data_overview():
8
+ # Load data from CSV file
9
+ data = pd.read_csv("Dataset\Rossmann_Cleaned_data.csv")
10
+
11
+ # Display data overview
12
+ st.subheader("Data Overview")
13
+ st.write(data)
14
+
15
+
16
+ show_data_overview() # Call the function to show data overview
pages/app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import joblib
5
+ import pickle
6
+
7
+ # Load your trained model
8
+ model = joblib.load('models\model1.pkl')
9
+
10
+
11
+ # with open('models/model1.pkl', 'rb') as file:
12
+ # model = pickle.load(file)
13
+
14
+ # Function to predict sales
15
+ def predict_sales(input_data):
16
+ # Make predictions using the loaded model
17
+ sales_prediction = model.predict(input_data)
18
+ return sales_prediction
19
+
20
+ # Streamlit app
21
+ def main():
22
+ st.title('Sales Prediction App')
23
+ st.image("images\\r1.jpg", caption="Sunrise by the mountains")
24
+
25
+ # Input widgets
26
+ PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
27
+
28
+ # -----------------------------------------------------------------------------------------------
29
+ StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
30
+ Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
31
+
32
+
33
+ # Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
34
+ StateHoliday = st.radio("State Holiday", ["Yes", "No"])
35
+ StateHoliday = 1 if StateHoliday == "Yes" else 0
36
+
37
+ SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
38
+ SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
39
+
40
+ Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
41
+ Promo = 1 if Promo == "store is participating" else 0
42
+ # ----------------------------------------------------------------------------------------
43
+
44
+
45
+ Store = st.slider("Store", 1, 1115)
46
+ Customers = st.slider("Customers", 0, 7388)
47
+ CompetitionDistance = st.slider("Competition Distance", 20, 75860)
48
+ CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
49
+ CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
50
+ # ----------------------------------------------------------------------------------------
51
+
52
+ # Store user inputs
53
+ input_data = pd.DataFrame({
54
+ 'PromoInterval': [PromoInterval],
55
+ 'StoreType': [StoreType],
56
+ 'Assortment': [Assortment],
57
+ 'StateHoliday': [StateHoliday],
58
+ 'Store': [Store],
59
+ 'Customers': [Customers],
60
+ 'Promo': [Promo],
61
+ 'SchoolHoliday': [SchoolHoliday],
62
+ 'CompetitionDistance': [CompetitionDistance],
63
+ 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
64
+ 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
65
+ })
66
+
67
+ # Display input data
68
+ st.subheader('Input Data:')
69
+ st.write(input_data)
70
+
71
+ # Predict sales
72
+ # if st.button('Predict Sales'):
73
+ # prediction = predict_sales(input_data)
74
+ # st.write('Predicted Sales:', prediction)
75
+
76
+ if st.button('Predict Sales'):
77
+ prediction = predict_sales(input_data)[0]
78
+ formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
79
+ st.write('Predicted Sales:', formatted_prediction)
80
+
81
+
82
+ if __name__ == '__main__':
83
+ main()
84
+
85
+
86
+
87
+ # Record at index 795018:
88
+ # PromoInterval Jan,Apr,Jul,Oct
89
+ # StoreType Small Shop
90
+ # Assortment basic
91
+ # StateHoliday 0
92
+ # Store 650
93
+ # Customers 636
94
+ # Promo 1
95
+ # SchoolHoliday 0
96
+ # CompetitionDistance 1420
97
+ # CompetitionOpenSinceMonth 10
98
+ # CompetitionOpenSinceYear 2012
99
+ # Sales 6322
100
+ # Name: 795018, dtype: object